hai bình nước giống nhau chứa 2 lượng nước giống nhau bình 1 có nhiệt độ t1 bình 2 có nhiệt độ t2=2t1 . sau khi trộn lẫn với nhau nhiệt độ khi cân bằng nhiệt là 24°C . tìm các nhiệt độ ban đầu của các bình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo PT cân bằng nhiệt:
\(Q_{thu}=Q_{toả}\\ \Leftrightarrow m.c.\left(t-t_1\right)=m.c.\left(t_2-t\right)\\ \Leftrightarrow35-t_1=2,5t_1-35\\ \Leftrightarrow3,5t_1=70\\ \Leftrightarrow t_1=20^oC\\ \Rightarrow t_2=2,5t_1=2,5.20=50^oC\)
Ta có: \(Q_{thu}=Q_{tỏa}\)
\(\Rightarrow36-t_1=t_2-36\)
\(\Rightarrow36-t_1=2t_1-36\) \(\Leftrightarrow t_1=24^oC\) \(\Rightarrow t_2=48^oC\)
Vì: Hai bình nước giống nhau, chứa cùng lượng nước, nên
Ta có:Pt cân bằng nhiệt:
Qtỏa=Qthu
<=>m.c.(t2-25)=m.c.(25-t1)
<=>t2-25=25-t1
<=>\(\dfrac{3}{2}t_1\)-25=25-t1
<=>t1=20oC
=>t2=\(\dfrac{3}{2}.20=30^oC\)
bài 1:
ta có phương trình cân bằng nhiệt
Qtỏa=Qthu
\(\Leftrightarrow m_1C_1\left(t_1-t\right)=m_2C_2\left(t-t_2\right)\)
mà hai chất đều là nước nên hai C bằng nhau nên:
\(m_1\left(100-30\right)=m_2\left(30-10\right)\Leftrightarrow70m_1=20m_2\)
mà m1+m2=27kg \(\Rightarrow m_2=27-m_1\)
vì vậy nên ta có;
70m1=20(27-m1)
giải phương trình ta có :
m1=6kg \(\Rightarrow\) m2=21kg
bài 2:
gọi m1,m2,m3,m4 lần lượt là khối lượng của nhôm,sắt,đồng và nước
t1,t2,t3,t4 lần lượt là nhiệt độ của nhôm,sắt,đồng và nước
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow Q_1+Q_2=Q_3+Q_4\)
\(\Leftrightarrow m_1C_1\left(t_1-t\right)+m_2C_2\left(t_2-t\right)=m_3C_3\left(t-t_3\right)+m_4C_4\left(t-t_4\right)\)
\(\Leftrightarrow880m_1\left(200-20\right)+460m_2\left(200-20\right)=380\cdot0.2\left(20-10\right)+4200\cdot2\cdot\left(20-10\right)\)
\(\Leftrightarrow158400m_1+82800m_2=84760\)
mà m1+m2=0.9\(\Rightarrow m_2=0.9-m_1\)nên:
158400m1+ 82800(0.9-m1)=84760
giải phương trình ta có m1=0.14kg\(\Rightarrow m_2=0.75kg\)
bài 3:
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=mC\left(t-t_2\right)\)
mà t1=2t2
\(\Rightarrow2t_2-30=30-t_2\)
giải phương trình ta có t2=20*C \(\Rightarrow t_1=40\)*C
bài 1:
ta có phương trình cân bằng nhiệt
Qtỏa=Qthu
mà hai chất đều là nước nên hai C bằng nhau nên:
mà m1+m2=27kg
vì vậy nên ta có;
70m1=20(27-m1)
giải phương trình ta có :
m1=6kg m2=21kg
bài 2:
gọi m1,m2,m3,m4 lần lượt là khối lượng của nhôm,sắt,đồng và nước
t1,t2,t3,t4 lần lượt là nhiệt độ của nhôm,sắt,đồng và nước
ta có phương trình cân bằng nhiệt:
Qtỏa=Qthu
Cho biết
\(m_1=m_2\)
\(C_1=C_2\)
\(t_1=20^oC\)
\(t_1'=3t_1=3.20=60^oC\)
Tìm: \(t_2=?\)
Giải:
Áp dụng phương trình cân bằng nhiệt, ta có:
\(Q_1=Q_2\)
\(m_1C_1\left(t_1-t_2\right)=m_2C_2\left(t_2-t_1'\right)\)
\(20-t_2=t_2-60\)
\(-t_2-t_2=-60-20\)
\(-2t_2=-80\)
\(t_2=40\left(^oC\right)\)
Đáp số: \(t_2=40^oC\)
Gọi khối lượng của nước trong bình 1 là : m
=> Khối lượng của nước trong bình 2 cũng là : m
Ta có phương trình cân bằng nhiệt :
\(Q_{tỏa}=Q_{thu}\)
\(\Rightarrow m.c.\left(t-t_1\right)=m.c\left(t_2-t\right)\)
\(\Rightarrow t-t_1=t_2-t\)
\(\Rightarrow t-t_1=2t_1-t\)
\(\Rightarrow2t=3t_1\)
\(\Rightarrow2.24=3t_1\)
\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{2.24}{3}=16^oC\\t_2=2t_1=32^oC\end{matrix}\right.\)
Vậy các nhiệt độ ban đầu của các bình lần lượt là 16oC, 32oC.