K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )

= 3x\(^3\) + y\(^3\) + z\(^3\)

3 tháng 4 2017

\(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3.\)

\(=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(=3x^3+y^3+z^3\)

3 tháng 4 2017

M= \(3x^3+y^3+z^3\)

26 tháng 2 2018

Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)

\(M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(M=3x^3+y^3+z^3\)

26 tháng 2 2018

\(M=x^3+x^3+x^3+y^3-y^3+y^3+z^3+z^3-z^3\)\(M=3x^3+y^3+z^3\)

5 tháng 3 2017

Bài 1: Bậc của đa thức là gì?

Bài 2:

Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)

\(\Rightarrow M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(\Rightarrow M=3x^3+y^3+z^3\)

5 tháng 3 2017

Bài 1 :

a) 4x3 - \(\dfrac{2}{3}x\) + 5 - 2x + x3

= ( 4x3 + x3 ) - ( \(\dfrac{2}{3}x\) + 2x ) + 5

= 5x3 - \(\dfrac{8}{3}x\) + 5

\(\rightarrow\) Bậc của đa thức là 3

b) 5x2 + 11x3 - 3x3 + 8x3 - 3x2

= ( 5x2 - 3x2 ) + ( 11x3 - 3x3 + 8x3 )

= 2x2 + 16x3

\(\rightarrow\) Bậc của đa thức là 3

Bài 2 :

M = x3 + y3 + z3 + x3 - y3 + z3 + x3 + y3 - z3

M = ( x3 + x3 + x3 ) + ( y3 - y3 + y3 ) + ( z3 + z3 - z3 )

M = 3x3 + y3 + z3

20 tháng 5 2022

`a)`

`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`

`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`

`A=5x^4y^3-2y^4+22`

        `->` Bậc: `7`

`b)B-5y^4=A`

`=>B=A+5y^4`

`=>B=5x^4y^3-2y^4+22+5y^4`

`=>B=5x^4y^3+3y^4+22`

24 tháng 1 2021

sai đề rồi nhé , đề phải là :

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+3xy.\left(x-y\right)+z^3+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right).\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy.\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)

\(=\frac{\left(x-y+z\right).\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{\left(x-y+z\right).\left(x^2+y^2+z^2+xy+yz-xz\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{x-y+z}{2}\)

25 tháng 9 2021

1)

a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)

\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)

2) 

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)