Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)
⇒ \(M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(M=3x^3+y^3+z^3\)
M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )
= 3x\(^3\) + y\(^3\) + z\(^3\)
Bài 1: Bậc của đa thức là gì?
Bài 2:
Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)
\(\Rightarrow M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(\Rightarrow M=3x^3+y^3+z^3\)
Bài 1 :
a) 4x3 - \(\dfrac{2}{3}x\) + 5 - 2x + x3
= ( 4x3 + x3 ) - ( \(\dfrac{2}{3}x\) + 2x ) + 5
= 5x3 - \(\dfrac{8}{3}x\) + 5
\(\rightarrow\) Bậc của đa thức là 3
b) 5x2 + 11x3 - 3x3 + 8x3 - 3x2
= ( 5x2 - 3x2 ) + ( 11x3 - 3x3 + 8x3 )
= 2x2 + 16x3
\(\rightarrow\) Bậc của đa thức là 3
Bài 2 :
M = x3 + y3 + z3 + x3 - y3 + z3 + x3 + y3 - z3
M = ( x3 + x3 + x3 ) + ( y3 - y3 + y3 ) + ( z3 + z3 - z3 )
M = 3x3 + y3 + z3
\(a,A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{1}{2}x^4y^3z^2\)
b, Bậc:9
c, Hệ số: `1/2`
Biến: x4y3z2
d, Thay x=-1, y=-2, z=-3 vào A ta có:
\(A=\dfrac{1}{2}x^4y^3z^2=\dfrac{1}{2}\left(-1\right)^4.\left(-2\right)^3.\left(-3\right)^2=\dfrac{1}{2}.\left(-8\right).9=-36\)
a, \(A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{x^4y^5z^2}{2}\)
b, bậc 11
c, hệ số 1/2 ; biến x^4y^5z^2
d, Thay x = -1 ; y = -1 ; z = -3 ta được
\(\dfrac{1.1.9}{2}=\dfrac{9}{2}\)
\(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3.\)
\(=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)
\(=3x^3+y^3+z^3\)
M= \(3x^3+y^3+z^3\)