Chứng minh rằng : \(\left(1+2+2^2+2^3+...+2^{120}\right)\)chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k cho minh nha bạn
c) =(1+2)+(2^2+2^3)+(2^4+2^5)+...+(2^119+2^200)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+...+2^119.(1+2)
=1.3+2^2.3+2^4+...+2^199.3 hiển nhiên sẽ chia hết cho 3
Câu d làm tương tự nhưng bạn phải giép 4 lũy thừa để được 15
Đặt \(1+2^2+2^4+....+2^{2014}=A\)
Ta có:
\(4A=2^2+2^4+2^6+...+2^{2016}\)
\(\Rightarrow4A-A=\left(2^2+2^4+...+2^{2016}\right)-\left(1+2^2+...+2^{2014}\right)\)
\(\Rightarrow3A=2^{2016}-1\Rightarrow A=\dfrac{2^{2016}-1}{3}\)
Ta lại có:
\(2^4=16;2^8=256;2^{12}=4096;.......\)
Các số trên đều là số chia hết cho 15 dư 1
\(\Rightarrow2^{2016}\) chia cho 15 dư 1
\(\Rightarrow2^{2016}-1\) chia hết cho 15
mà 15 chia hết cho 3
nên \(\dfrac{2^{2016}-1}{3}\) chia hết cho 15
Vậy A chia hết cho 15(đpcm)
Chúc bạn học tốt!!!
Không tìm thấy Chứng minh rằng: (1+2²+2⁴+2⁶+...+2²⁰¹⁴) ) chia hết cho 15 trong dữ liệu nào hết của tôi
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a) (1+5+52+53+...529)chia hết cho 6
Đặt (1+5+52+53+...529) = A
\(A=\left(1+5\right)+\left(5^2+5^3\right)+\left(5^4+5^5\right)....+\left(5^{28}+5^{29}\right)\)
\(A=\left(1+5\right)+5^2\left(5+1\right)+5^4\left(5+1\right)+...+5^{28}\left(5+1\right)\)
\(A=6+5^2.6+5^4.6+...+5^{28}.6\)
Vậy A chia hết cho 6
b) (1+3+3^2+3^3+...+3^29) chia hết cho 13
Đặt B= (1+3+3^2+3^3+...+3^29)
\(B=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{27}+3^{28}+3^{29}\right)\)
\(B=13+3^3\left(1+3+3^2\right)+....+3^{27}\left(1+3+3^2\right)\)
\(B=13+3^3.13+....+3^{27}.13\)
Vậy B chia hết 13
Câu c,d tương tự.Chúc bạn học tốt
Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2=n^2+6n+9-n^2+2n-1\)
\(=8n+8=8.\left(n+1\right)⋮8\)
Vậy \(\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ
nhóm 4 số đầu tiên vs nhau rồi cứ thế mà đtặ chung
1 + 2 + 22 + ... + 2120
= ( 1 + 2 + 22 + 23 ) + ( 24 + 25 + 26 + 27 ) + ... + ( 2117 + 2118 + 2119 + 2120 )
= 15 + 24(1+2+22+23) + ... + 2117(1+2+22+23)
= 15.(24+25+...+2117) chia hết cho 15
=> đpcm