K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC và ΔEBA có

góc BAC=góc BEA
góc B chung

=>ΔABC đồng dạng với ΔEBA

b: ΔABC vuông tại A có AE vuông góc BC

nên AB^2=BE*BC

c: BF là phân giác

=>AF/AB=CF/BC

=>AF/3=FC/5=4/8=1/2

=>AF=1,5cm

24 tháng 4 2023

loading...  

a) Do AD là đường phân giác của ∠BAC

⇒ BD/CD = AB/AC = 9/12 = 3/4

b) Xét hai tam giác vuông: ∆ABC và ∆EDC có:

∠C chung

⇒ ∆ABC ∽ ∆EDC (g-g)

a: BD/CD=AB/AC=3/4

b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

a: Xét ΔABC có 

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

Xét ΔADE có AD=AE

nên ΔADE cân tại A

b: Xét ΔABC có 

D là trung điểm của AB

DF//AC

Do đó: F là trung điểm của BC

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình

=>DF=AE

mà AE=AD

nên DF=AD

=>ΔADF cân tại D

c: Xét tứ giác ADFE có 

DF//AE

DF=AE

Do đó: ADFE là hình bình hành

mà AD=AE

nên ADFE là hình thoi

=>AF⊥DE

26 tháng 1 2022

- Toàn là kiến thức lớp 8 anh/chị ơi :)

14 tháng 7 2021

a) tam giác AEB vuông tại E có EH là đường cao \(\Rightarrow BH.BA=BE^2\)

tam giác CEB vuông tại E có EK là đường cao \(\Rightarrow BK.BC=BE^2\)

\(\Rightarrow BH.BA=BK.BC\)

b) \(BH.BA=BK.BC\Rightarrow\dfrac{BH}{BC}=\dfrac{BK}{BA}\)

Xét \(\Delta BHK\) và \(\Delta BCA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\dfrac{BH}{BC}=\dfrac{BK}{BA}\end{matrix}\right.\)

\(\Rightarrow\Delta BHK\sim\Delta BCA\left(c-g-c\right)\)

b) \(\Delta BHK\sim\Delta BCA\Rightarrow\angle BHK=\angle BCA\)

Kẻ \(ED\bot CF\) 

Vì \(\angle EHF=\angle EDF=\angle HFD=90\Rightarrow EHFD\) là hình chữ nhật

\(\Rightarrow HD\) và EF cắt nhau tại trung điểm I của mỗi đường

Vì \(\Delta EHF\) vuông tại H có I là trung điểm EF 

\(\Rightarrow\angle FHI=\angle HFI=\angle AFE\left(1\right)\)

Xét \(\Delta AFC\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFC=\angle AEB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AFC\sim\Delta AEB\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\dfrac{AF}{AC}=\dfrac{AE}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle AFE=\angle ACB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\angle FHI=\angle ACB=\angle BHK\Rightarrow\angle BHD=BHK\)

\(\Rightarrow H,D,K\) thẳng hàng \(\Rightarrow H,I,K\) thẳng hàng

undefined

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEA vuông tại E có EH là đường cao ứng với cạnh huyền AB, ta được:

\(BH\cdot BA=BE^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại E có EK là đường cao ứng với cạnh huyền AC, ta được:

\(BK\cdot BC=BE^2\)(2)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)

b) Xét ΔBHK và ΔBCA có 

\(\dfrac{BH}{BC}=\dfrac{BK}{BA}\)(cmt)

\(\widehat{HBK}\) chung

Do đó: ΔBHK\(\sim\)ΔBCA(c-g-c)

13 tháng 2 2022

a, Nửa chu vi là \(\frac{6+6+6}{2}=9cm\)

Diện tích tam giác là \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{9\left(9-6\right)\left(9-6\right)\left(9-6\right)}\)

\(=\sqrt{9.3.3.3}=9\sqrt{3}\)cm2

b, Xét tam giác ABC vuông tại A

tan^B = \(\frac{AC}{AB}\Rightarrow\frac{\sqrt{3}}{3}=\frac{2}{AB}\Rightarrow AB=\frac{6\sqrt{3}}{3}=2\sqrt{3}\)cm 

Diện tích tam giác là \(\frac{1}{2}AB.AC=6\sqrt{3}\)cm2

c, Dựng AH là đường cao đồng thời là đường trung tuyến do tam giác ABC cân tại A

=> HC = BC/2 = 3 cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(AH=\sqrt{AC^2-HC^2}=4cm\)

Diện tích tam giác ABC là : \(\frac{1}{2}AH.BC=\frac{4.6}{2}=12cm^2\)

9 tháng 9 2021

b) xét tg DHC và tg BAC có A=H =90 độ

                                             C chung

=> tg DHC ~ tg BAC( g.g)

=> \(\dfrac{CH}{AC}=\dfrac{CD}{BC}=>CH.CB=CD.CA\)

c) ta có AC=AD+DC   => DC=AC-AD=20-9,4=10,6 cm

tg DHC~ tg BAC => \(\dfrac{SDHC}{SBAC}=\left(\dfrac{DC}{BC}\right)^2=\left(\dfrac{10,6}{25}\right)^2\)

=> SDHC= SBAC.\(\left(\dfrac{10,6}{25}\right)^2\)

Chỗ này bạn thay số và tính nhé

9 tháng 9 2021

a) Xét ABC cos A=90 độ=> BC2=AC2+AB2( dl Py ta go)

=> BC2= 202+152=625 => BC=25 cm

    Xét tg ABC có BD pg B 

\(\dfrac{AB}{BC}=\dfrac{AD}{DC}=>\dfrac{AB}{BC+AB}=\dfrac{AD}{AD+DC}< =>\dfrac{15}{15+20}=\dfrac{AD}{BC}< =>\dfrac{15}{35}=\dfrac{AD}{25}=>AD=\dfrac{15.25}{35}~~9,4cm\)