Cho \(\Delta ABC\) có AB = AC, M là trung điểm của BC.
1. Chứng minh : \(\Delta AMB=\Delta AMC\)
2. Từ M kẻ ME \(\perp\)AB tại E, MF \(\perp\) AC tại F. Chứng minh : AE=AF
3.Chứng minh EF//BC
4.Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC. Hai đường này cất nhau ở N. Chứng minh: A, M, N thẳng hàng
a) Xét \(\Delta ABM\) và \(\Delta ACM\), ta có:
AB=AC (gt)
MB=MC ( vì M là trung điểm của BC)
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)
b) Vì \(\Delta ABM=\Delta ACM\) nên \(\widehat{BAM}=\widehat{CAM}\)
Xét \(\Delta AEM\) và \(\Delta AFM\), ta có:
\(\widehat{AEM}=\widehat{AFM}\left(=90^0\right)\)
AM chung
\(\widehat{EAM}=\widehat{FAM}\) (cmt)
\(\Rightarrow\Delta AEM=\Delta AFM\) ( cạnh huyền-góc nhọn)
\(\Rightarrow AE=AF\) ( 2 cạnh tương ứng)
c)Gọi O là giao điểm của AM và EF
Xét \(\Delta AEO\) và \(\Delta AFO\), ta có:
AE=AF ( câu b)
\(\widehat{EAO}=\widehat{FAO}\) ( câu b)
AO chung
\(\Rightarrow\Delta AEO=\Delta AFO\) (c-g-g)
\(\Rightarrow\widehat{EOA}=\widehat{FOA}\) ( 2 cạnh tương ứng)
Ta có: \(\widehat{EOA}+\widehat{FOA}=180^0\)
\(\Rightarrow\widehat{EOA}=\widehat{FOA}=\dfrac{180^0}{2}=90^0\)
hay AO\(\perp\)EF
Vì \(AO\perp EF\) mà \(AM\perp EF\) nên EF//BC
c)