K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 9 2021

\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)

\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)

TH1: \(b=0\)

\(f\left(1\right)=1\Rightarrow a=c+d\)

\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\) 

\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)

TH2: \(d=-a\)

\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)

\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)

Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)

Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang

20 tháng 4 2016

Ta có: x là số nguyên và x chia hết cho 5

=> \(ax^3\)chia hết cho 5

\(bx^2\)chia hết cho 5

\(cx\)chia hết cho 5

\(d\)chia hết cho 5

Suy ra cả a,b,c,d đều chia hết cho 5

15 tháng 8 2017

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) suy ra:

\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\)

\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)

\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )

Vậy \(a,b,c,d⋮5\)

Thay b = 3a + c vào f(x) ta được:

f(x) = ax+ (3a+c)x+ cx + d

⇒ f(1) = a.13 + 3a + c.12+ c.1 + d

          = a + 3a + c + c + d

          = 4a + 2c + d

          = 4a + 2c + d                          (1)

f(2) = a.2+ 3a + c.2- c.2 + d

      = 8a + 3a + 4c - 2c + d

      = 4a + 2c + d                        (2)

Nhân vế cho vế của (1) và ( 2) ta được 

F(1).F(2)=(4a+2c+d).(4a+3c+d)

             =\(\left(4a+2c+d\right)^2\)

Vậy f(1).F(2) là số chính phương

3 tháng 5 2021

Bài này đội tuyển toán help mik với

4 tháng 5 2018

có sai đề ko bạn

phải là f(1).f(-2) là bình phương của 1 số nguyên chứ