lam giup mk vs
x3-5x2+5x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A(x) + B(x)= 5x2 +5x +1
Suy ra: B(x)= (5x2 +5x +1) - A(x)
(Xong rồi thay đa thức A(x) vào rồi tính là ra đó nha!!!!)
a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)
c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)
d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)
x - \(\frac{9}{5}\)= 2.x
x + \(\frac{-9}{5}\)= 2.x
x - x + \(\frac{-9}{5}\)= 2.x - x
\(\frac{-9}{5}\)= x
Ta có:
\(P\left(x\right)=2x\left(x^3-3x+1\right)-\left(x^3-3x+1\right)+x^2-4\)
Do đó: \(P\left(a\right).P\left(b\right).P\left(c\right)=\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)\)
Ta có:
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-3x+1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+ac+bc=-3\\abc=-1\end{matrix}\right.\)
C1: \(\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)=\left(abc\right)^2-4\left(a^2b^2+b^2c^2+c^2a^2\right)+16\left(a^2+b^2+c^2\right)-4^3\)
\(=1-4.9+16.6-4^3=-3\)\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=-3\)
C2: Biến đổi thêm một chút
Ta có: \(a,b,c\ne0\) nên
\(a^3-3a+1=0\Leftrightarrow a\left(a^2-3\right)+1=0\)\(\Rightarrow a^2-3=\dfrac{-1}{a}\)
Tương tự...
\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=\left(-\dfrac{1}{a}-1\right)\left(-\dfrac{1}{b}-1\right)\left(-\dfrac{1}{c}-1\right)\)
\(=-\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)\)\(=-\dfrac{a+1}{a}.\dfrac{b+1}{b}.\dfrac{c+1}{c}=abc+ac+bc+ab+a+b+c+1=-1-3+1=-3\)
\(\frac{x^2}{5x+25}-\frac{10-2x}{x}+\frac{5x+50}{5x+x^2}=\frac{x^2}{5\left(x+5\right)}-\frac{10-2x}{x}+\frac{5x+50}{x\left(x+5\right)}\)
\(=\frac{x^3}{5x\left(x+5\right)}-\frac{5\left(x+5\right)\left(10-2x\right)}{5x\left(x+5\right)}+\frac{5\left(5x+50\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)