Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x}\)
\(=\frac{4\left(x-2\right)\left(4-x\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}+\frac{2\left(x+2\right)\left(4-x\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)\(+\frac{\left(5x-6\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{24x-8x^2-32}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}+\frac{4x-2x^2+16}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)\(+\frac{5x^2+4x-12}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{24x-8x^2-32+4x-2x^2+16+5x^2+4x-12}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{32x-5x^2-28}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(a.\)
\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
\(=\left(x-5\right)\left(x+5\right).\dfrac{3x-7}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
\(b.\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\dfrac{5\left(x-1\right)}{3\left(x+3\right)}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}\)
\(=\dfrac{x}{3\left(x-1\right)}\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}=\dfrac{5x\left(x+1\right)\left(x-1\right)}{15\left(x-1\right)^2\left(x+1\right)}=\dfrac{x}{3\left(x-1\right)}\)\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
\(A=\left(\frac{x}{25+5x}+\frac{5x+50}{x^2+5x}-\frac{10-2x}{x}\right)\div\frac{3x+15}{7}\)
ĐK : \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(=\left(\frac{x}{5\left(x+5\right)}+\frac{5\left(x+10\right)}{x\left(x+5\right)}-\frac{2\left(5-x\right)}{x}\right)\div\frac{3\left(x+5\right)}{7}\)
\(=\left(\frac{x^2}{5x\left(x+5\right)}+\frac{5\cdot5\cdot\left(x+10\right)}{5x\left(x+5\right)}-\frac{2\left(5-x\right)\cdot5\left(x+5\right)}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)
\(=\left(\frac{x^2}{5x\left(x+5\right)}+\frac{25x+250}{5x\left(x+5\right)}-\frac{10\left(25-x^2\right)}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)
\(=\left(\frac{x^2+25x+250-250+10x^2}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)
\(=\frac{11x^2+25x}{5x\left(x+5\right)}\times\frac{7}{3\left(x+5\right)}\)
\(=\frac{77x^2+175x}{15x\left(x+5\right)^2}\)
\(=\frac{77x^2+175x}{15x\left(x^2+10x+25\right)}=\frac{77x^2+175x}{15x^3+150x^2+375x}\)
\(=\frac{77x+175}{15x^2+150x+375}\)
\(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\)
\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\left(ktmđk\right)\)
Vậy pt vô nghiệm
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
\(\frac{x^2}{5x+25}-\frac{10-2x}{x}+\frac{5x+50}{5x+x^2}=\frac{x^2}{5\left(x+5\right)}-\frac{10-2x}{x}+\frac{5x+50}{x\left(x+5\right)}\)
\(=\frac{x^3}{5x\left(x+5\right)}-\frac{5\left(x+5\right)\left(10-2x\right)}{5x\left(x+5\right)}+\frac{5\left(5x+50\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)