K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

20 tháng 7 2021

a/ DCE^+ECF^=180o

=> ECF^=90o

Xét t/g DEC và t/g BFC có

EC = FC (GT)

DCE^=BCF^=90o

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

BEH^=DEC^ (đối đỉnh)

EBF^=EDC^ (do t/g BFC = t/g DEC)

 ⇒ΔBEH∼ΔDEC (g.g)

=> 

20 tháng 7 2021

câu b chưa rõ lắm

 

5 tháng 7 2017

A B C D E F

A B C D E

21 tháng 11 2016

Ta có : FK // AC vì cùng vuông góc với BD nên góc FKH = goc CAK

Mà goc FAH + goc HKB = 90 độ , góc CAH + góc AKO mà Ở , K , B thẳng hàng nên 2 góc kia đối đỉnh , dẫn đến AKH thẳng hàng

21 tháng 11 2016

Bạn Tuấn Anh sai rồi vì nếu FK//AC thì phải suy ra góc CAK + góc FKA = 180 độ chứ nếu suy ra CAK = FKH thì ngộ nhận A,H,K thẳng hằng rồi còn chứng minh làm gì nữa =)))

27 tháng 11 2015

d, ta có FK//AC vì cùng vuông góc với BD nên góc FKH = góc CAK

Mà góc FAH + góc HKB = 90 độ, góc CAH + góc AKO = 90 độ nên góc góc HKB = góc AKO mà O, K, B thẳng hàng nên 2 góc kia  đối đỉnh, dẫn đến A, K, H thẳng hàng

 

5 tháng 1 2018
giúp mik mấy câu trên lun ik

a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED(ch-gn)

Suy ra: BA=BE(hai cạnh tương ứng) và DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC