K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

 (a) Gọi F là giao điểm của AE và BP. 

Từ tính chất góc nội tiếp và đường cao của tam giác vuông ta dễ thấy :∠AEC = ∠ABC = ∠BPCvậy tứ giác CPFE nội tiếp. Từ đó suy ra ∠CPE = ∠CFE, ∠PCE = ∠EFBCộng các đẳng thức góc với chú ý ∠CEP = 90◦ , ta suy ra 90◦ = ∠CPE +∠PCE = ∠CFE +∠EFB = ∠CFB, hay CF ⊥ PB, và do đó CF ∥ AB.Bổ đề. Cho hình thang ABCD, AB ∥ CD. Giả sử AC cắt BD tại O và AD cắt BC tại I. Khi đó, OI đi qua trung điểm AB và CD.CMVẽ đường thẳng EF đi qua O và song song CD.
Ta có EO//DC ⇒ OE/DC = AO/AC (1)
OF//DC ⇒ OF/DC = BO/BD (2)
Ta có: AB//DC ⇒ OA/OC = OB/OD
⇒ OA/ (OC + OA) = OB/(OD+ OB) ⇒ OA/AC = OB/BD (3)
Từ (1),(2),(3) ta có OE/DC = OF/DC ⇒ OE = OF
Ta có AB//EF
⇒ AN/EO = IN/IO và BN/FO = IM/KO
⇒ AN/EO = BN/FO ⇒ AN = BN
Tương tự: FE//DC ⇒ EO/DM = IO/IM
và FO/CM = IO/IM ⇒EO/DM=FO/CM ⇒ DM=CM suy ra đường thẳng OI đi qua trung điểm của các cạnh AB và CD.Bổ đề dc CMGọi M' là giao điểm của CB và AE. Áp dụng bổ đề cho hình thang ABFC, ta có M'P đi qua trung điểm AB hay M'P đi qua O. Vậy AE, BC, OP đồng quy tại M', đó là điều phải chứng minh. (b) Áp dụng định lý Menelaus cho tam giác APO với C, M, B thẳng hàng, ta dễ thấy OM/ OP = CA /(CA +2CP) . Từ đó ta có S(M AB)/ S(PAB) = OM/OP = CA/(CA +2CP ). Suy ra S(MAB) = S(PAB) · CA/(CA +2CP)>/= S(PAB) · CA 2can2BC = (BC ·P A )/2 · CA /2 can2BC = 4R^2/ 4can2 = R^2/can2 . Đẳng thức xảy khi PB = can 2R.Hok Tốt =>>>>>>>>>>>> 
3 tháng 9 2021

ảo vl

22 tháng 1 2019

a, Sử dụng AQ//O'P

=>  Q A P ^ = O ' A P ^ => Đpcm

b, CP//BR (cùng vuông góc AR)

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
12 tháng 7 2020

1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)

nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)

2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)

Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)

3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'

Ta có \(\widehat{CN'A}=\widehat{CAM}\)\(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)

Vậy ba điểm A, M, N thẳng hàng (đpcm)

4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)

Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)

Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)

Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\) 

Từ \(MA^2=AO.MO\)  suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)

Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)

Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)

30 tháng 4 2016

a) góc PAB = BPK ( góc nt, góc giữa tt và dây cùng chắn cung BP) 

góc APB = 900 (góc nt chắn nửa (O))

mà góc KPM phụ góc BPK ; góc PMK phụ góc PAB => góc KPM = góc PMK => tg KPM cân tại K

b) góc AQB = 900 (góc nt chắn nửa (O))

Trog tg AMN có AC, MQ là hai đường cao cắt nhau tại B => B là trực tâm => NB vuông góc với AM mà BP vuông góc AM

=> P, B, N thẳng hàng

+ Xét tứ giác APCN có góc APN = góc ACN = 900 nên là tứ giác nội tiếp => góc PAB = góc PNC, mà góc PAB = góc BPK (cmt)

=> góc PNC = góc BPK => tg KPN cân tại K => KP = KN, mà KP = KM => KM = KN => K là trung điểm của MN

Trog tg vuông QMN có QK là đường trung tuyến => KQ = 1/2MN = KP

=> tg OPK = tg OQK (c.c.c) => góc OQK = góc OPK = 900. Vậy QK là tiếp tuyến của (O)