Chứng minh rằng : 52005+52004+52003 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2005}+5^{2003}=5^{2003}.\left(5^2+1\right)=5^{2003}.26\)
Mà \(26⋮13\Rightarrow5^{2003}.26⋮13\)
Hay \(5^{2005}+5^{2003}⋮13\left(ĐPCM\right)\)
Chúc bn học tốt
1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26
Mà 26 chia hết cho 13 => ...
2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b (*nhân cả hai vế với 2*)
<=> 2a2-2ab+2b2 +2 -2a -2b ≥0 (*chuyển vế phải sang vế trái và đổi dấu*)
<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0
<=> (a-b)2+(a-1)2+(b-1)2≥0
=> Bất đẳng thức đúng
=> đpcm
3) Ta có a+b+c=0
<=> a+b = -c
<=> (a+b)3=(-c)3
<=> a3+3a2b+3ab2+b3= -c3
<=> a3+b3+c3= -3a2b -3ab2 (*chuyển vế*)
<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)
Bạn sai đề rồi phải là 16x+26y chia hết cho 31 chứ:
3x+y chia hết cho 31
=> 27.(3x+y) chia hết cho 31
=> 27.3x+27y chia hết cho 31
=> 81x+27y chia hết cho 31
=> (62+3+16).x+(1+26).y chia hết cho 31
=> 62x+3x+16x+y+26y chia hết cho 31
=> 62x+(3x+y)+(16x+26y) chia hết cho 31
Ta thấy tổng trên chia hết cho 31, mà 62x chia hết cho 31 và 3x+y chia hết cho 31 nên 16x+26y chia hết cho 31.
Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31