K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

loading...

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

28 tháng 8 2018

Đặt ( 6x + 11y) là A

      ( x + 7y ) là B

Ta có: 5A+B= 5( 6x + 11y ) + ( x + 7y )

                  = 30x + 55y + x + 7y

                  = 31x +62y

Do 31 chia hết cho 31 => 31x phải chia hết cho 31

    62 chia hết cho 31 => 62y phải chia hết cho 31

=> 31x + 62y chia hết cho 31

hay 5A+B chia hết cho 31                                          

mà A chia hết cho 31 => 5A cũng phải chia hết cho 31

=> B sẽ chia hết cho 31 (đpcm) ahihi nhớ k mk nha

28 tháng 8 2018

nhớ k cho mk nha

8 tháng 8 2016

Đặt \(A=6.\left(x+7y\right)-\left(6x+11y\right)\) 

\(\Rightarrow A=6x+42y-6x-11y\)\(=y\left(42-11\right)=31y\)

Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31

Nên 6 (x+7y) chia hết cho 31.

Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31

Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31.

14 tháng 2 2020

cho mik hỏi điều ngược lại có đúng ko? ai trả lời mik cho, mình đang cần gấp

21 tháng 2 2016

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+(11y+31y) chia hết cho 31

=>6x+42y chia hết cho 31

=>6(x+7y) chia hết cho 31

mà (6;31)=1

=>x+7y chia hết cho 31(đpcm)

8 tháng 1 2015

Bạn sai đề rồi phải là 16x+26y chia hết cho 31 chứ:

3x+y chia hết cho 31

=> 27.(3x+y) chia hết cho 31

=> 27.3x+27y chia hết cho 31

=> 81x+27y chia hết cho 31

=> (62+3+16).x+(1+26).y chia hết cho 31

=> 62x+3x+16x+y+26y chia hết cho 31

=> 62x+(3x+y)+(16x+26y) chia hết cho 31

Ta thấy tổng trên chia hết cho 31, mà 62x chia hết cho 31 và 3x+y chia hết cho 31 nên 16x+26y chia hết cho 31.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$

28 tháng 4 2016
   

đặt A=6(x+7y)-(6x+11y)

=6x +42y-6x-11y

=31y

do 31y chia hết cho 31

6x+11y chia hết cho 31=>6(x+7y) chia hết cho 31

do (6,31)=1=>x+7y chia hết cho 31

vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31