Cho hàm số y=-5/9x-6
a) Tính f(-1),f(0),f(2),f(1/2)
b)Chứng minh hàm số luôn nghịch biến trên R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(0\right)=\dfrac{2}{7}.0-8=-8\)
\(f\left(2\right)=\dfrac{3}{7}.2-8=-\dfrac{50}{7}\)
\(f\left(-1\right)=\dfrac{3}{7}.\left(-1\right)-8=-\dfrac{59}{7}\)
\(f\left(-2\right)=\dfrac{3}{7}.\left(-2\right)-8=-\dfrac{62}{7}\)
b) Với mọi \(x_1,x_2\in R\), ta có
\(x_1>x_2\Leftrightarrow\dfrac{3}{7}x_1>\dfrac{3}{7}x_2\Leftrightarrow\dfrac{3}{7}x_1-8>\dfrac{3}{7}x_2-8\Leftrightarrow f\left(x_1\right)>f\left(x_2\right)\)
\(\Rightarrow\) Hàm số luôn đồng biến trên R
b: Vì \(a=\dfrac{3}{7}>0\) nên hàm số đồng biến trên R
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-x_1+1+x_2-1}{x_1-x_2}=-1\)
Vậy: f(x) nghịch biến trên R
Đáp án D
Ta có Đáp án D
Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018
= –x(3–x)g(1–x)
Suy ra (vì g(1–x) < 0, ∀ x ∈ R )
Vậy hàm số đã cho nghịch biến trên khoảng 3 ; + ∞
a, Để y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1
y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1
y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1
b, f(1) = 2
\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2
\(\Leftrightarrow\) m - 1 + 2m - 3 = 2
\(\Leftrightarrow\) m = 2
Với m = 2 ta có:
f(2) = (2 - 1).2 + 2.2 - 3 = 3
Vậy f(2) = 3
c, f(-3) = 0
\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0
\(\Leftrightarrow\) 2m = 3
\(\Leftrightarrow\) m = 1,5
Vì m > 1 (1,5 > 1)
\(\Rightarrow\) m - 1 > 0
hay a > 0
Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R
Chúc bn học tốt!
Gọi x1, x2 là hai giá trị của x (x1>x2)
Ta có: x1>x2\(\Leftrightarrow\)-2x1<-2x2 \(\Leftrightarrow\)f(x1) < f(x2)
Vì x1>x2 mà f(x1) < f(x2) suy ra hàm số nghịch biến trên tập hợp số thực R
Dựa vào đồ thị hàm số ta thấy: f’(x) = 0 khi và chỉ khi x= 1;
Ta có bảng biến thiên :
Dựa vào bảng biến thiên ta thấy f(x) < 0 với mọi x≠ ± 2
Xét hàm số y= ( f( x) ) 2 có đạo hàm y’ = 2f(x). f’ (x)
Bảng xét dấu:
Chọn D.
b: Vì \(a=-\dfrac{5}{9}< 0\) nên hàm số luôn nghịch biến trên R