Câu 1: Tìm điểm M thuộc đò thị(c): \(y= x^3-3x^2-2\) biết hệ số góc của tiếp tuyến với (c) tại M bằng 9
A.M(1;-6),M(-3;-2) B.M(-1;-6),M(3;-2) C.M(-1;-6),M(-3;-2) D.M(1;6),M(3;2)
Câu 2: Tiếp tuyến với đồ thị hàm số \(y=\frac{1}{3}x^3-2x^2+3x+4\) biết tiếp tuyến song song với đt d:y= \(3x-\frac{20}{3}\) là:
A.y=3x+4;y=\(3x-\frac{20}{3}\) B.y=3x-4;y=\(3x-\frac{40}{3}\) C.y=3x+4 D.y=3x-4
Câu 3: có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (0;10) đẻ đường thẳng d:y=-x+m cắt đò thị hàm số \(y=\frac{2x+1}{x-1}\)tại hai điểm phan biệt
A.5 B.6 C.7 D.8
Câu 4: Đặt a=log126, b=log12 7. Hãy biểu diễn log27 theo a và b
\(A.\frac{a}{b+1} B.\frac{b}{1-a} C.\frac{a}{b-1} D.\frac{b}{a+1}\)
Câu 1:
\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)
Gọi hoành độ của M là \(x_M\)
Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:
\(f'(x_M)=3x_M^2-6x_M=9\)
\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$
\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)
Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)
Đáp án B
Câu 2:
Gọi hoành độ tiếp điểm là $x_0$
Hệ số góc của tiếp tuyến tại tiếp điểm là:
\(f'(x_0)=x_0^2-4x_0+3\)
Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)
Khi đó: PTTT là:
\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )
Do đó \(y=3x+4\Rightarrow \) đáp án A
Câu 3:
PT hoành độ giao điểm:
\(\frac{2x+1}{x-1}-(-x+m)=0\)
\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)
Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt
\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)
\(\Leftrightarrow m^2-6m-3> 0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)
Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)
Có 3 giá trị m thỏa mãn.