So sánh
a) 2 ^300 và 3^ 200
b) 333^ 444 và 444^ 333
c) 2^3n và 3^2n (N thuộc N*)
d) 3^300 và 2^450
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
a. 3450 = (33)150 = 27150;
5300 = (52)150 = 25150
Vì 27150 > 25150
=> 3450 > 5300.
b. 333444 = (3.111)444 = 3444.111444 =(34)111.111444=81111.111444
444333=(4.111)333=4333.111333=(43)111.111333=64111.111333
Vì 81111 > 64111 và 111444 > 111333
=> 81111.111444 > 64111.111333
=> 333444 > 444333.
c. 2014.2016
= 2014.(2015+1)
= 2014.2015+2014 (1)
20152
=2015.2015
=2015.(2014+1)
=2015.2014+2015 (2)
Từ (1) và (2) => 2014.2016 < 20152.
b) 333\(^{444}\)và 444\(^{333}\)
Ta có :333\(^{444}\)(3.111)\(^{4.111}\)=(3\(^4\).111\(^4\))\(^{111}\)=(81.111\(^4\)).111
444\(^{333}\)(4.111)\(^{3.111}\)=4\(^3\).111\(^2\))\(^{111}\)=(64.111\(^3\))\(^{111}\)
vì 81>64 ; 111\(^4\)>111\(^3\) nêb (81.111\(^4\))\(^{111}\)>(64.113\(^3\))\(^{111}\)
hay 333\(^{444}\)>444\(^{333}\)
a) 2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
b)3334=(3 . 111)4=34 . 1114=1113 . 34.111
4443=(111 . 4)3=1113.43
Xét 34.111=8991
43=64
Vì 64<8911 nên 3334>4443
c)23n=(23)n=8n
32n=(32)n=9n
Vì 8n<9n nên 23n<32n
d)3300=(32)150=9150
2450=(23)150=8150
Vì 8150<9150 nên 3300>2450