rút gọn
B= 1-5+5^2-5^3 + ...... - 3^99 + 5^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\)
\(5B=5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\)
\(5B+B=\left(5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\right)+\left(1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\right)\)
\(6B=5^{^{101}}+1\)
\(B=\dfrac{5^{^{101}}+1}{6}\)
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
Sửa đề: căn x-5/căn x-3
a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)
b: x-5căn x+6=0
=>căn x=2 hoặc căn x=3
=>x=9(loại) hoặc x=4(nhận)
Khi x=4 thì A=5/(2+3)=5/5=1