Tìm GTNN, GTLN của A=2x+3y, biết \(2x^2+3y^2\) nhỏ hơn hoặc bằng 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiaskopski:
\(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)
\(A^2\le25\Rightarrow-5\le A\le5\)
Max:Dấu ''='' xảy ra khi x=y=1
Min:Dấu ''='' xảy ra khi x=y=-1
Hok bít đúng hok nữa, sai thôi nha
Áp dụng bđt \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
Dấu bằng xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)hay \(\frac{\sqrt{2}x}{\sqrt{3}y}=\frac{\sqrt{2}}{\sqrt{3}}\Leftrightarrow x=y\)
Vậy \(A\text{ min }=-5\Leftrightarrow x=y=-1\)
\(A\text{ max }=5\Leftrightarrow x=y=1\)
Biết x^2+y^2=52
tìm GTLN,GTNN của A=2x+3y
áp dụng H) có:
A² = (2x+3y)² ≤ (4 + 9)(x² + y²) = 13.52 = 676
=> - 26 ≤ A ≤ 26
Amin = - 26 ; A max = 26 đạt được khi:
x/y = 2/3 <=> x = 2y/3 kết hợp x² + y² = 52 => y² + 4y²/9 = 52 <=> y= ± 6 , x = ± 4
c/ Ta có:\(6a-5b=1\)
\(\Rightarrow5b=6a-1\)
Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)
\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)
\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)
GTLN:
Áp dụng BĐT \(a^2+b^2\ge2ab\)
\(\Rightarrow x^2+1\ge2x\Rightarrow2x^2\ge4x-2\)
\(y^2+1\ge2y\Rightarrow3y^2\ge6y-3\)
\(\Rightarrow2x^2+3y^2\ge2\left(2x+3y\right)-5\)
mà \(2x^2+3y^2\le5\)
\(\Rightarrow2\left(2x+3y\right)-5\le5\Rightarrow2x+3y\le5\)
Vậy Max A = 5 khi x = y = 1