K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Biết x^2+y^2=52 
tìm GTLN,GTNN của A=2x+3y 

áp dụng H) có: 
A² = (2x+3y)² ≤ (4 + 9)(x² + y²) = 13.52 = 676 
=> - 26 ≤ A ≤ 26 
Amin = - 26 ; A max = 26 đạt được khi: 
x/y = 2/3 <=> x = 2y/3 kết hợp x² + y² = 52 => y² + 4y²/9 = 52 <=> y= ± 6 , x = ± 4

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

25 tháng 10 2015

A = \(\frac{2x+3y}{2x+y+2}\) 

<=> A(2x + y + 2) = 2x + 3y 

<=> 2x.A + y.A + 2.A = 2x + 3y

<=> 2x(1 - A) + (3 - A).y = 2.A

Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]< (4x+ y2) .[(1 - A)+ (3 - A)2

=> (2.A)< 2A2 -8A + 10

<=> - 2A- 8A  + 10 > 0

<=> A+ 4A - 5 <

<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1

Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y= 1 => x ; y

Max A = 1 tại....

 

 

20 tháng 8 2016

Áp dụng bđt Bunhiacopxki , ta có : \(B^2=\left(2.x+3.y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow B^2\le676\Rightarrow B\le26\)

Vậy Max B = 26 \(\Leftrightarrow\begin{cases}x^2+y^2=52\\\frac{x}{2}=\frac{y}{3}\end{cases}\) \(\Leftrightarrow\begin{cases}x=4\\y=6\end{cases}\) 

Chú ý \(2x+3y\ge0\)

13 tháng 5 2018

GTNN

p=x^2-2x-y

p=x^2-(2x+y)

x^2>=0=>P>=-(2x+y)=-4

x=0; y=4 thoa man dk

GTLN

3p=3x^2-4x-(2x+3y)

khong co gt ln

13 tháng 5 2018

đéo biết con cẹc j cũng giải

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko...