K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

\(A=x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\ge2\sqrt{x.\dfrac{1}{16x}}+\dfrac{15}{16x}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)(do \(x\le\dfrac{1}{4}\Rightarrow\dfrac{15}{16x}\le\dfrac{15}{4}\))

\(minA=\dfrac{17}{4}\Leftrightarrow x=\dfrac{1}{4}\)

 

31 tháng 8 2021

https://hoc24.vn/cau-hoi/b-x-dfrac1xvoi-x-hoac-bang-2-tim-gtnnphuong-phap-diem-doi.1695379613290

Bạn giúp mình lun câu này được không bạn

31 tháng 8 2021

Ta có:\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3x}{4}\)

Áp dụng bất đẳng thức Cô-si ta có:

   \(\dfrac{x}{4}+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{4}\cdot\dfrac{1}{x}}=1\)

Ta có: \(\dfrac{3x}{4}\ge\dfrac{3.2}{4}=\dfrac{3}{2}\)

\(\Rightarrow B=1+\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu "=" xảy ra ⇔ x=2

Vậy \(MinB=\dfrac{5}{2}\Leftrightarrow x=2\)

31 tháng 8 2021

\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=1+\dfrac{3}{2}=\dfrac{5}{2}\)(do \(x\ge2\))

\(minB=\dfrac{5}{2}\Leftrightarrow x=2\)

31 tháng 8 2021

\(C=\dfrac{1}{x}+\dfrac{x}{16}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{x}{16}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

dấu = xảy ra khi x=4

31 tháng 8 2021

\(x+\dfrac{1}{x}=\dfrac{1}{16}x+\dfrac{1}{x}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{x}{16x}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

\(minC=\dfrac{17}{4}\Leftrightarrow x=4\)

NV
2 tháng 7 2021

a.

\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)

b.

\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

c.

\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)

\(A_{min}=8\) khi \(x=2\)

NV
2 tháng 7 2021

d.

\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=2\)

e.

\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)

\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)

f.

\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)

1, Với \(x\ge0,x\ne1\) ta có :

\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

   \(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

   \(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

   \(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2, Ta có \(P=\dfrac{7}{4}\)

          \(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

         \(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

         \(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)

          \(\Leftrightarrow\sqrt{x}=3\)

          \(\Leftrightarrow x=9\left(tm\right)\)

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)

\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: Để \(P=\dfrac{7}{4}\) thì x=9

Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

 

*Chứng minh bất đẳng thức

Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)  (đpcm)

 

 

 

 

Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)

a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{x+4}{\sqrt{x}}\)

b: Để A=5 thì \(x+4=5\sqrt{x}\)

\(\Leftrightarrow x=16\)

31 tháng 8 2021

a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)

b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)

Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16

c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)

Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)

Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)