A= \(x+\dfrac{1}{x}\) với 0 < x < hơn bằng \(\dfrac{1}{4}\)
Tìm GTNN
PHƯƠNG PHÁP ĐIỂM DƠI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3x}{4}\)
Áp dụng bất đẳng thức Cô-si ta có:
\(\dfrac{x}{4}+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{4}\cdot\dfrac{1}{x}}=1\)
Ta có: \(\dfrac{3x}{4}\ge\dfrac{3.2}{4}=\dfrac{3}{2}\)
\(\Rightarrow B=1+\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu "=" xảy ra ⇔ x=2
Vậy \(MinB=\dfrac{5}{2}\Leftrightarrow x=2\)
\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=1+\dfrac{3}{2}=\dfrac{5}{2}\)(do \(x\ge2\))
\(minB=\dfrac{5}{2}\Leftrightarrow x=2\)
\(C=\dfrac{1}{x}+\dfrac{x}{16}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{x}{16}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
dấu = xảy ra khi x=4
\(x+\dfrac{1}{x}=\dfrac{1}{16}x+\dfrac{1}{x}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{x}{16x}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
\(minC=\dfrac{17}{4}\Leftrightarrow x=4\)
a.
\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)
Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)
b.
\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)
c.
\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)
\(A_{min}=8\) khi \(x=2\)
d.
\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=2\)
e.
\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)
\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)
f.
\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)
Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)
1, Với \(x\ge0,x\ne1\) ta có :
\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2, Ta có \(P=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(tm\right)\)
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)
\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: Để \(P=\dfrac{7}{4}\) thì x=9
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
*Chứng minh bất đẳng thức
Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) (đpcm)
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)
a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{x+4}{\sqrt{x}}\)
b: Để A=5 thì \(x+4=5\sqrt{x}\)
\(\Leftrightarrow x=16\)
a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)
b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16
c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)
\(A=x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\ge2\sqrt{x.\dfrac{1}{16x}}+\dfrac{15}{16x}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)(do \(x\le\dfrac{1}{4}\Rightarrow\dfrac{15}{16x}\le\dfrac{15}{4}\))
\(minA=\dfrac{17}{4}\Leftrightarrow x=\dfrac{1}{4}\)
https://hoc24.vn/cau-hoi/b-x-dfrac1xvoi-x-hoac-bang-2-tim-gtnnphuong-phap-diem-doi.1695379613290
Bạn giúp mình lun câu này được không bạn