Cho a = 4m + 8n + 9
b = m+4n+4p
c = 4m + 7n + 8p
Chứng minh nếu a,b,c là 3 cạnh của tam giác vuông ( a là cạnh huyền) thì m,n,p cũng là 3 cạnh của tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên
p2 = m2 + n2
Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2
= - n2 + p2 - m2 = 0
=> a2 = b2 + c2
Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a
đề hình như sai sai bạn xem lại
cho a= 4m+ 8n+ 9
b= m+ 4n+ 4p
c= 4m+7n+8p
a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z
nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)
<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca
<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)
Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông
Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.
Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,
Áp dụng định lý Pytago.Ta chứng minh được :
x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )
NHỚ TK MK NHALưu Đức Mạnh
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
a) gọi tam giác đó là tam giác ABC vuông tại A
Tam giác vuông ABC vuông tại A,có AM là trung tuyến
Trên tia đối của MA lấy điểm D sao cho MA=MD
\(\Rightarrow AM=\frac{1}{2}AD\left(1\right)\)
Ta có Tứ giác ABDC là hình bình hành và góc A = 90
=>ABDC là hình chữ nhật
\(\Rightarrow AD=BC\left(2\right)\)
THAY (2) VÀO (1)
\(\Rightarrow AM=\frac{1}{2}BC\)
Vậy trong một tam giác vuông,đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
b) ngược lại :3
a) Gọi Δ đó là ΔABC, ΔABC vuông tại A, AM là trung tuyến ΔABC
Trên tia đối MA lấy MD sao cho MD = MA
Xét ΔBMA và ΔCMD có:
MB = MC (AM: trung tuyến BC)
BMA = CMD (đối đỉnh)
MA = MD (cách vẽ)
=> ΔBMA = ΔCMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
ABM = DCM (2 góc tương ứng), mà 2 góc ở vị trí slt
=> AB // CD
Có: AB // CD, AB ⊥ AC => DC ⊥ CA
Xét ΔBAC và ΔDCA có:
BAC = DCA (cùng = 90o)
AB = CD (cmt)
AC: chung
=> ΔBAC = ΔDCA (2cgv)
=> BC = DA (2 cạnh tương ứng)
mà AM = 1/2AD => AM = 1/2BC
=> ĐPCM
b) Gọi Δ đó là ABC, AD là trung tuyến Δ, AD = 1/2BC
Do AD là trung tuyến ΔABC => DB = DC = 1/2C
Mà AD = 1/2BC
=> DB = DC = DA
=> ΔDBA và DAC là 2 Δ cân tại D
=> DBA = DAB, DCA = DAC
Xét ΔABC có: ABC + BCA + BAC = 180o (đ/lí tổng 3 góc Δ)
=> 2(DAB + DAC) = 180o
=> BAC = 90o
=> ΔABC là Δ vuông tại A
=> ĐPCM