a)
b)
3)
4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)
\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)
\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)
BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM
Dấu "=" <=> a=b=c
Ủng hô va` kb với mình nhé ^^
BĐT đồng bậc nên chuyển vế thẳng tiến ạ!:D Em ko chắc đâu nhá!
a) \(BĐT\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge a^3b^3+a^3b^3\)
\(\Leftrightarrow a^2b^4-a^3b^3+a^4b^2-a^3b^3\ge0\)
\(\Leftrightarrow a^2b^3\left(b-a\right)+a^3b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3b^2-a^2b^3\right)\ge0\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi a = b hoặc tồn tại một số bằng 0.
b) \(BĐT\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng do \(a^2+ab+b^2=a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3}{4}b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\) )
Đẳng thức xảy ra khi a = b
Lời giải:
Xét hiệu:
\(2(a^4+c^4)-(a^3+c^3)(a+c)=2(a^4+c^4)-(a^4+a^3c+ac^3+c^4)\)
\(=a^4+c^4-a^3c-ac^3=(a-c)(a^3-c^3)=(a-c)^2(a^2+ac+c^2)\geq 0\)
với mọi \(a,c>0\)
Do đó: \(2(a^4+c^4)\geq (a^3+c^3)(a+c)\Leftrightarrow \frac{a^4+c^4}{a^3+c^3}\geq \frac{a+b}{2}\)
Hoàn toàn tương tự ta có:
\(\left\{\begin{matrix}
\frac{b^4+c^4}{b^3+c^3}\geq \frac{b+c}{2}\\
\frac{a^4+b^4}{a^3+b^3}\geq \frac{a+b}{2}\end{matrix}\right.\)
Cộng theo vế các BĐT thu được:
\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\geq \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=2018\)
Ta có đpcm.
Dấu bằng xảy ra khi $a=b=c=\frac{2018}{3}$
\(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge2018\)
\(\Leftrightarrow\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge a+b+c\)
\(\LeftrightarrowΣ_{cyc}\dfrac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\dfrac{a^3}{c^3+a^3}-\dfrac{b^3}{b^3+c^3}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\dfrac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)
Dễ thấy BĐT cuối luôn đúng nên ta có ĐPCM
Dấu "=" <=> \(a=b=c=\dfrac{2018}{3}\)
Ta chứng minh: \(\dfrac{a^4+b^4}{a^3+b^3}\ge\dfrac{a+b}{2}\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+b^4+ba^3\)
\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)Bất đẳng thức cuối luôn đúng nên ta có điều phải chứng minh. Áp dụng vào bài, ta có:
\(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=2018\)
nh ghê ^.^
Mà hình như là bài cuối đề thi tỉnh thái bình năm 2016-2017 thì phải :V
\(\Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)
=>-4a+3b-4a+3b=0
=>-8a=-6b
=>4a=3b
hay a/3=b/4
1) \(2x - \frac{3}{4}= \left ( + \frac{2}{3} \right )\)
\(2x = \frac{2}{3}+ \frac{3}{4}\)
\(2x = \frac{17}{12}\)
\(x = \frac{17}{12}: 2\)
x = \(\frac{17}{24}\)
Vậy ...........
2) x5 : x3 = \(\frac{1}{16}\)
\(x^{2}= \frac{1}{16}\)
=> \(x= \frac{1}{14}\) hoặc \(x= - \frac{1}{14}\)
Vậy ........
3) \(\left | x + \frac{1}{3} \right | - 2 = - 1\)
\(\left | x + \frac{1}{3} \right | = 1\)
* \(x + \frac{1}{3} = 1\)
\(x = 1 - \frac{1}{3}\)
\(x = \frac{2}{3}\)
* \(x + \frac{1}{3} = - 1\)
\(x =- 1 - \frac{1}{3}\)
\(x = - \frac{4}{3}\)
Vậy ...........hoặc..............
4) \(\frac{2}{9}x\left (x - 3\tfrac{7}{8} \right )= 0\)
\(\frac{2}{9}x\left (x - \frac{31}{8} \right )= 0\)
<=> \(\begin{bmatrix} \frac{2}{9}x = 0 & & \\ x - \frac{31}{8}= 0 & & \end{bmatrix}\)
\(\Leftrightarrow \begin{bmatrix} x = 0 & & \\ x = \frac{31}{8} & & \end{bmatrix}\)
pn bỏ dấu ngoặc bên phải nhé
Vậy ...............hoặc............
Chúc pn học tốt
câu 2 KL 2 giá trị nhé