K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu

4 tháng 2 2017

Trước tiên chứng minh:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

(nhân vô rút gọn chuyển hết sang trái được)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)

\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)

Từ đây ta có:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)

\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)

Vậy \(ab+bc+ca\le\frac{3}{4}\)

14 tháng 4 2017

1 cách khác của tui (câu hỏi của trg tuấn nghĩa) trên hh nhé

16 tháng 5 2021

\(a)\)

\(\frac{x^2+y^2+5}{2}\ge x+2y\)

\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)

\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)

\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)

\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

16 tháng 5 2021

b)

Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b

-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1

Mà ta có: a+b=1

-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3

30 tháng 3 2022

a) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

30 tháng 3 2022

b) Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=6\)

Dấu "=" \(\Leftrightarrow a=b=c=2\)

20 tháng 10 2021

Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có đpcm

14 tháng 3 2016

Áp dụng bất đẳng thức  Bunyakovsky cho  \(2\)  bộ  \(3\)  số thực  \(\left(1+1+1\right)\)  và  \(\left(a+b+c\right)\). Ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

\(\Rightarrow\)  \(a^2+b^2+c^2\ge\frac{\frac{9}{4}}{3}=\frac{3}{4}\)  \(\left(đpcm\right)\)

Dấu   \("="\)   xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{2}\)