Cho f(x)=x2013+x2012-kx5-x3+x2-3k với k thuộc R
g(x)=x+1
Tìm k để f(x) chia cho g(x) có số dư là 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề bài ko đúng, cô lấy x = 1, y = 2 thì:
\(VT=1-\frac{1.4}{3}=-\frac{1}{3}\)
\(VP=1-1.2=-1\)
Ta thấy VT và VP không bằng nhau.
2. Ta có thể thực hiện phép chia f(x) cho g(x) hoặc tách như sau:
\(f\left(x\right)=x^{2013}+x^{2012}-kx^5-kx^4+kx^4+kx^3+\left(1-k\right)x^3+\left(1-k\right)x^2+kx^2+kx\)
\(-kx-k-2k\)
\(=\left(x+1\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
\(=g\left(x\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
Vậy để f(x) chia g(x) dư 2014 thì -2k = 2014 hay k = -1007
b: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)
\(=x^2-3x+6+\dfrac{a-6}{x+1}\)
Để f(x):g(x) là phép chia hết thì a-6=0
hay a=6
a: Thay a=3 vào f(x), ta được:
\(f\left(x\right)=x^3-2x^2+3x+3\)
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)
\(=x^2-3x+6-\dfrac{3}{x+1}\)
d: Ta có: f(x):g(x)
\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)
\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)
\(=x^2-3x+6+\dfrac{-1}{x+1}\)
Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
\(a,f\left(x\right):g\left(x\right)=\left(3x^4+9x^3+7x+2\right):\left(x+3\right)\\ =\left[3x^3\left(x+3\right)+7\left(x+3\right)-19\right]:\left(x+3\right)\\ =\left[\left(3x^3+7\right)\left(x+3\right)-19\right]:\left(x+3\right)\\ =3x^3+7.dư.19\)
\(c,\) Để \(k\left(x\right)⋮g\left(x\right)\Leftrightarrow-x^3-5x+2m=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow-\left(-3\right)^3-5\left(-3\right)+2m=0\\ \Leftrightarrow27+15+2m=0\\ \Leftrightarrow2m=-42\\ \Leftrightarrow m=-21\)
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-x^2+3x^2-3x+3x-3-k+11}{x-1}\)
Để đây là phép chia hết thì 11-k=0
hay k=11