Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(c,x^k+1-x^k-1\)
\(=0?!?!\)
\(d,x^m+3-x^m+1\)
\(=4\)
\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(f,81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a+1\)
\(=\left(9a+1\right)^2\)
\(g,25a^2.b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=\left(a-b-c\right)^2\)
\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)
\(=2by.2ax\)
\(=4axby\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
1. Đề bài ko đúng, cô lấy x = 1, y = 2 thì:
\(VT=1-\frac{1.4}{3}=-\frac{1}{3}\)
\(VP=1-1.2=-1\)
Ta thấy VT và VP không bằng nhau.
2. Ta có thể thực hiện phép chia f(x) cho g(x) hoặc tách như sau:
\(f\left(x\right)=x^{2013}+x^{2012}-kx^5-kx^4+kx^4+kx^3+\left(1-k\right)x^3+\left(1-k\right)x^2+kx^2+kx\)
\(-kx-k-2k\)
\(=\left(x+1\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
\(=g\left(x\right)\left[x^{2012}-kx^4+kx^3+\left(1-k\right)x^2+kx-k\right]-2k\)
Vậy để f(x) chia g(x) dư 2014 thì -2k = 2014 hay k = -1007