K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Bài 3:

Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng l: Đoạn thẳng [B, K] Đoạn thẳng m: Đoạn thẳng [C, L] Đoạn thẳng n: Đoạn thẳng [K, L] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] Đoạn thẳng t: Đoạn thẳng [M, N] Đoạn thẳng e: Đoạn thẳng [J, I] A = (0.38, 5.72) A = (0.38, 5.72) A = (0.38, 5.72) B = (-1.58, 0.68) B = (-1.58, 0.68) B = (-1.58, 0.68) C = (9.08, 0.5) C = (9.08, 0.5) C = (9.08, 0.5) Điểm G: Giao điểm đường của f, g Điểm G: Giao điểm đường của f, g Điểm G: Giao điểm đường của f, g Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm H: Giao điểm đường của h, j Điểm H: Giao điểm đường của h, j Điểm H: Giao điểm đường của h, j Điểm L: Giao điểm đường của h, k Điểm L: Giao điểm đường của h, k Điểm L: Giao điểm đường của h, k Điểm M: Trung điểm của a Điểm M: Trung điểm của a Điểm M: Trung điểm của a Điểm N: Giao điểm đường của s, n Điểm N: Giao điểm đường của s, n Điểm N: Giao điểm đường của s, n Điểm J: Trung điểm của H, G Điểm J: Trung điểm của H, G Điểm J: Trung điểm của H, G Điểm I: Giao điểm đường của d, q Điểm I: Giao điểm đường của d, q Điểm I: Giao điểm đường của d, q

Do chỉ sử dụng kiến thức chương I, nên cô giải như sau:

Gọi M là trung điểm BC. Kẻ MN // BK.

Lấy I, J là trung điểm của AG và HG.

Do BK và CL cùng vuông góc với KL nên BK // CL. Vậy KBCL là hình thang vuông.

Xét hình thang vuông KBCL là M là trung điểm BC, MN // BK nên MN là đường trung bình hình thang.

Suy ra 2MN = BK + CL

Xét tam giác AHG có I, J là các trung điểm của các cạnh AG và HG nên IJ là đường trung bình hay AH = 2IJ và \(IJ\perp KL\).

Xét tam giác ABC có G là trọng tâm nên GA = 2GM, vậy thì GI = GM.

Vậy thì  \(\Delta GMN=\Delta GIJ\) (Cạnh huyền - góc nhọn) 

Suy ra \(MN=IJ\Rightarrow2MN=2IJ\Rightarrow BK+CL=AH.\)

23 tháng 10 2017

Bài 2:

A' A C I J B B'

Gọi I, J lần lượt là trung điểm AB và A'B'. Khi đó ta đã có I cố định.

Do d //d' nên AA'B'B là hình thang. Vậy thì IJ là đường trung bình hay \(IJ=\frac{AA'+BB'}{2}=\frac{AC+CB}{2}=\frac{AB}{2}\)

Ta thấy do AB không đổi nên độ dài AB là số không đổi, vậy AB/2 cũng không đổi.

Ta thấy J nằm trên tia Ix // d// d' mà độ dài đoạn IJ không đổi nên J là điểm cố định.

Tóm lại trung điểm của A'B' là điểm cố định thỏa mãn nằm trên tia Ix // d // d' và IJ = AB/2. 

2 tháng 9 2020

a) FN là đường trung bình của tam giác ADC 

\(\Rightarrow FN=\frac{AD}{2}\)

EM là đường trung bình của tam giác ADB 

\(\Rightarrow EM=\frac{AD}{2}\)

NE là đường trung bình của tam giác ABC

\(\Rightarrow EN=\frac{CB}{2}\)

FM là đường trung bình của tam giác BDC

\(\Rightarrow FM=\frac{CB}{2}\)

Mà AD = BC (gt) 

\(\Rightarrow FN=EM=EN=FM=\frac{AD}{2}=\frac{CB}{2}\)

\(\Rightarrow FN=EM=EN=FM\)

=> Tứ giác FNEM là hình thoi 

b)  FM là đường trung bình của tam giác BDC

\(\Rightarrow FM//BC\Leftrightarrow\widehat{DFM}=\widehat{DCB}=80^o\)

FN là đường trung bình của tam giác ADC

\(\Rightarrow FN//AD\Leftrightarrow\widehat{CFN}=\widehat{CDA}=40^o\)

Ta có \(\widehat{CFN}+\widehat{MFN}+\widehat{DFM}=180^o\)

\(\Leftrightarrow40^o+\widehat{MFN}+80^o=180^o\Leftrightarrow\widehat{MFN}=60^o\)

5 tháng 1 2020

B A C D E F I

Gọi I là tâm của ABCD.
Ta có:
\(\widehat{IFE}+\widehat{IFA}=90^0\) 
\(\widehat{ICB}+\widehat{CBI}=90^0\)
Mặt khác: \(\widehat{IFA}=\widehat{BDA}=\widehat{CBI}\)
=> \(\widehat{IFE}=\widehat{ICB}\)
=> IFCE nội tiếp.
=> ^EFC = ^EIC = ^ECI = 900 - CBI = 650
=> ^DFC = 1800 - ^EFC = 1150

Vậy \(\widehat{DFC}=115^0\)

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.a/ chứng minh tam giác AEF vuông cân.b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.a/ Tính các góc BAD và DAC.b/ chứng minh ABCD là hình thang cân.c/...
Đọc tiếp

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
     Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.

~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

22 tháng 11 2017

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .a ) Chứng minhcác tam giác ABD và ACD vuôngb ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = IDBài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DCa ) Tính các góc BAD và góc DACb ) Chứng minh tứ giác ABCD là hình thang cân c ) Gọi...
Đọc tiếp

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .

a ) Chứng minhcác tam giác ABD và ACD vuông

b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID

Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC

a ) Tính các góc BAD và góc DAC

b ) Chứng minh tứ giác ABCD là hình thang cân 

c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi

Bài 3 :  Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .

a) Cminh : tam giác AEF vuông cân 

b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD 

c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD 

3
30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi