cho hbh ABCH có tâm O.M,N là trung điểm của BC,CD.CM vectoOA+vectoOM+vectoON=vecto0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của CD, do tính chất của ngũ giác đều ta có O nằm trên AH mặt khác AH cũng đi qua trung điểm của BE, ta có:
\(\overrightarrow{OA}\) cùng phương với vtAH
(\(\overrightarrow{OB}+\overrightarrow{OE}\)) là 1 vecto cùng phương với \(\overrightarrow{AH}\)
(\(\overrightarrow{OC}+\overrightarrow{OD}\)) là 1 vecto cùng phương với \(\overrightarrow{AH}\)
=>\(\overrightarrow{V}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\) là vecto cùgn phương với \(\overrightarrow{AH}\)
* Gọi K là trung điểm DE, có BK đi qua O và các trung điểm của AC và DE
\(\overrightarrow{OB}\) cùng phương vớI \(\overrightarrow{BK}\)
\(\overrightarrow{OA}+\overrightarrow{OC}\) : cùng phương với\(\overrightarrow{BK}\)
\(\overrightarrow{OD}+\overrightarrow{OE}\) : cùng phương với \(\overrightarrow{BK}\)
=> \(\overrightarrow{V}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\) là vecto cùng phương với \(\overrightarrow{BK}\)
\(\overrightarrow{AH}\)và \(\overrightarrow{BK}\)là 2 vecto không cùng phương, mà chúng đều cùng phương với \(\overrightarrow{V}\)
nên vtv phải là\(\overrightarrow{0}\) (chỉ có vt0 là vecto cùng phương với 2 vecto không cùng phương)
=>đpcm
Ko chắc sẽ đúng
a)* Trên mp ABCD kéo dài MN và AB sao cho MN cắt AB = { I }
Xét mp (SMN) và (SAB) có:
S là điểm chung (1)
I là điểm chung (2)
=> (SMN) n (SAB) = { SI }
* Vì I thuộc mp ABCD (cmt)
G là trọng tâm tam giác SAB
Xét mp (GMN) và (SAB) có:
G và I là điểm chung
=> (GMN) n (SAB) = {GI}
\(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}+\dfrac{1}{2}\overrightarrow{OC}+\dfrac{1}{2}\overrightarrow{OC}+\dfrac{1}{2}\overrightarrow{OD}\)
\(=\overrightarrow{OA}+\overrightarrow{OC}+\dfrac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OD}\right)\)
\(=\overrightarrow{0}\)