K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

21 tháng 10 2021

\(2^{300}+3^{300}+4^{300}-729.24^{100}=\)

\(=2^{300}+3^{300}+\left(2^2\right)^{300}-3^6.\left(2^3.3\right)^{100}=\)

\(=2^{300}+3^{300}+2^{600}-2^{300}.3^{106}=\)

\(=2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}\)

Ta có

\(2^{300}=\left(2^2\right)^{150}=4^{150}>3^{150}>3^{106}\Rightarrow2^{300}-3^{106}>0\)

\(\Rightarrow2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}>0\)

\(\Rightarrow2^{300}+3^{300}+4^{300}>729.24^{100}\)

19 tháng 10 2016

Ta có

\(2^{300}+3^{300}+4^{400}=2^{300}+3^{300}+2^{800}.\)

\(729.24^{100}=3^{106}.2^{300}=2^{300}+3^{105}.2^{300}\)

Ta lại có

\(3^{105}+3^{105}+3^{105}+3^{105}.2^{297}=3^{315}+3^{105}.2^{297}\)

Nên chỉ cần so sánh \(3^{105}.2^{297}\)với \(2^{800}\)là đc , dùng logarist cơ số 2 là xong 

19 tháng 10 2016

Đề bài của mình là 4^300 cơ mà 

4 tháng 10 2014

hehe  bài này cóphải như vậy hk ku em 2300 +3300 +4400=2300+3300+2800 ,729.24100=3106.2300=2300+3105.2300 chỉ ta lại có 3105+3105+3105+3105.2297=3315+3105.2297 nên chỉ cần cso sánh 3105.2297 với 2800  là ok ,dùng logarist cơ số 2 xuống là ok.

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

5 tháng 10 2017

2300 và 3300

Vì 2 < 3 Nên 2300 < 3300

Mình nghĩ là bn nghi nhầm nếu vậy mình sẽ sửa :

2300 và 3200

Ta có :

2300 = ( 23 )100 = 8100

3200 = ( 32 )100 = 9100

Vì 8100 < 9100 Nên 2300 < 3200

5 tháng 10 2017

 bài này rất dễ bạn nào không phải là học sinh giỏi cũng làm được đúng không. Mình biết đáp án bài này rồi. Nếu lướt qua mà thấy thì trả lời nha

21 tháng 10 2018

\(729.24^{100}=3^6.\left(2^3.3\right)^{100}=3^{106}.2^{300}\)

\(4^{300}=2^{300}.2^{300}\)

Ta có: \(2^{300}>2^{212}=\left(2^2\right)^{106}=4^{106}>3^{106}\)

\(\Rightarrow2^{300}.2^{300}>2^{300}.3^{106}\Rightarrow4^{300}>729.24^{100}\)

Vậy \(2^{300}+3^{300}+4^{300}>729.24^{100}\)