Cho p, q, r khác nhau và r khác 0. Chứng minh rằng nếu hai phương trình sau: \(x^2+px+pr=0\) và \(x^2+qx+qr=0\)
có đúng một nghiệm chung thì các nghiệm còn lại của chúng thõa mãn phương trình: \(x^2+rx+pq=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt phương trình là (1)
ĐK: \(3x-16y-24\ge0\)
\(3x-16y-24=\sqrt{9x^2+16x+32}\Leftrightarrow\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9\left(3x-16y-24\right)^2=9\left(9x^2+16x+32\right)\)\(\Leftrightarrow\left(9x-48y-72\right)^2=81x^2+144x+288\)
Với x, y nguyên thì (3y+5) là ước của (-7) và chia cho 3 dư 2
=> (3y+5)=-1 hoặc (3y+5)=-7
+ TH1: \(\left(3y+5\right)=-1\Leftrightarrow y=-2\Rightarrow x=-1\)
+ TH2: \(\left(3y+5\right)=-7\Leftrightarrow y=-4\Rightarrow x=-7\)
Vậy các cặp nghiệm nguyên của (x;y) là: (-1;-2); (-7;-4)
\(\Leftrightarrow\left(9x-48y-72\right)^2=\left(9x+8\right)^2+224\)
\(\Leftrightarrow\left(9x-48y-72\right)^2-\left(9x+8\right)^2=224\)
\(\Leftrightarrow\left(9x-48y-72+9x-8\right)\left(9x-48y-72-9x-8\right)=224\)
\(\Leftrightarrow\left(18x-48y-64\right)\left(-48y-80\right)=224\)
\(\Leftrightarrow-32\left(9x-24y-32\right)\left(3y+5\right)=224\)
\(\Leftrightarrow\left(9x-24y-32\right)\left(3y+5\right)=-7\)
giả sử a là nghiệm chung của 2 phương trình
\(x^2+\text{ax}+bc=0\left(1\right)\) và \(x^2+bx+ca=0\left(2\right)\)
Ta có: \(\hept{\begin{cases}a^2+a\alpha+bc=0\\a^2+b\alpha+ca=0\end{cases}}\)
\(\Rightarrow\alpha\left(a-b\right)+c\left(b-a\right)=0\Rightarrow\left(a-c\right)\left(a-b\right)=0\Rightarrow\alpha=c\ne0\)
Thay \(\alpha=c\)vào (1) ta có: \(c^2+ac+bc=0\Rightarrow c\left(a+b+c\right)=0\Rightarrow a+b+c=0\)
Mặt khác, theo định lý Viet phương trình(1) còn có nghiệm nữa là b, phương trình(2) còn có nghiệm nữa là a. Theo định lý Viet đảo, a và b là hai nghiệm của phương trình \(x^2-\left(a+b\right)x+ab=0\Leftrightarrow x^2+cx+ab=0\left(\text{đ}pcm\right)\)
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ
Cho phương trình px2 + qx +1 = 0 (1) với p;q là các số hữu tỉ . Biết ... Thay nghiệm x = (√5 - √3)/(√5 + √3) = 4 - √15 vào pt khai triển và thu gọn ta có: ... Vì p, q hữu tỉ nên VT của (*) hữu tỉ còn VP vô tỉ. Dođó muốn (*) nghiệm đúng thì ta phải có đồng thời: { 31p + 4q + 1 = 0 { 8p + q = 0. Dễ dàng giải hệ này có p = 1; q = - 8
\(\left\{{}\begin{matrix}x^2+px+pr=0\left(1\right)\\x^2+qx+qr=0\left(2\right)\end{matrix}\right.\)
Giả sử phương trình (1) có 2 nghiệm là a, b. Phương trình (2) có 2 nghiệm là b, c.
Theo vi-et ta có:
\(\left\{{}\begin{matrix}a+b=-p\left(3\right)\\ab=pr\left(4\right)\\c+b=-q\left(5\right)\\cb=qr\left(6\right)\end{matrix}\right.\)
Rồi biến đổi tiếp đi b