K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

=2xx+2x+6x+1

=2x(x+1)+6x+1=2x(x+1+3x)+1≥1

dấu = xảy ra khi 2x(x+1+3x)=0 còn lại bạn tự xử nhé :)

bài này mình ko chắc có đúng ko nên phải nghiên cứu trước  rồi mới làm nha

b: Ta có: \(B=2x^2+8x+1\)

\(=2\left(x^2+4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=-2

16 tháng 9 2018

\(B=2x^2-8x+1=2\left(x^2-4x+\frac{1}{2}\right)=2\left(x^2-4x+4-\frac{7}{2}\right)=2\left(x-2\right)^2-7\)

Vì: \(2\left(x-2\right)^2-7\ge-7\forall x\)

=> Giá trị nhỏ nhất của B là - 7 tại \(2\left(x-2\right)^2=0\Rightarrow x=2\)

=.= hok tốt!!

10 tháng 4 2019

a) \(A=2x^2-8x+7\)

\(A=2\left(x^2-4x+\frac{7}{2}\right)\)

\(A=2\left(x^2-2\cdot x\cdot2+2^2-\frac{1}{2}\right)\)

\(A=2\left[\left(x-2\right)^2-\frac{1}{2}\right]\)

\(A=2\left(x-2\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

10 tháng 4 2019

b) \(B=3x^2-3x+1\)

\(B=3\left(x^2-x+\frac{1}{3}\right)\)

\(B=3\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(B=3\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{12}\right]\)

\(B=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

11 tháng 9 2021

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

10 tháng 9 2021

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

10 tháng 9 2021

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

1 tháng 1 2022

\(A=\dfrac{2x^2-8x+17}{x^2-2x+1}\left(x\ne1\right)\)

\(\Leftrightarrow A\left(x^2-2x+1\right)=2x^2-8x+17\)

\(\Leftrightarrow Ax^2-2Ax+A=2x^2-8x+17\)

\(\Leftrightarrow x^2\left(A-2\right)-2x\left(A-4\right)+A-17=0\left(1\right)\)

\(A-2=0\Leftrightarrow A=2\Leftrightarrow x=3,75\left(tm\right)\left(2\right)\)

\(A-2\ne0\Leftrightarrow A\ne2\Rightarrow\Delta'\ge0\Leftrightarrow\left(A-4\right)^2-\left(A-17\right)\left(A-2\right)\ge0\Leftrightarrow A\ge\dfrac{18}{11}\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\left(tm\right)\left(3\right)\)

\(\left(2\right)và\left(3\right)\Rightarrow A_{min}=\dfrac{18}{11}\Leftrightarrow x=\dfrac{13}{2}\)