Cho tam giác ABC, A = 60°. Các phân giác BD,CE cắt nhau tại O (D thuộc AC, E thuộc AB). Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt tia BO tại N. a) Tính số đo góc BOC. b) Chứng minh rằng BMC = BNC = 30° c) So sánh số đo của góc BDC và góc CEA. Huhu mọi ngừi cố gắng giúp mình nha, thanks nè ❤️❤️❤️
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Góc BDC là góc ngoài của tam giác ABD tại đỉnh D => góc BDC = góc A + góc ABD = góc A + góc \(\frac{B}{2}\)
+) Góc CEA là góc ngoài của tam giác BEC tại đỉnh E => góc CEA = góc B + góc BCE = góc B + góc \(\frac{C}{2}\)
Để góc BDC = góc CEA <=> góc A + góc \(\frac{B}{2}\) = góc B + góc \(\frac{C}{2}\) <=> góc A = góc \(\frac{B}{2}\) + góc \(\frac{C}{2}\) = \(\frac{B+C}{2}\)
=> B + C = 2.A
Mà góc A + B + C = 180o nên góc A + 2.A = 180o => 3.A = 180o => góc A = 60o
Vậy,.,,,,,
a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)
=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)
BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)
CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)
=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)
\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)
b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)
Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)
=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)
=>\(\widehat{CBx}+\widehat{BCy}=240^o\)
BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)
CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)
=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)
\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)
=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)
Vậy ............................
Ta sử dụng tính chất: hai tia phân giác của hai góc kề bù thì vuông góc với nhau
+) BM; BI là 2 tia p/g của góc B trong và ngoài tam giác => BM | BI => góc MBI = 90o
CN và CI là 2 tia p/g của góc C trong và ngoài tam giác ABC => CN | CI => góc ICN = 90o
+) Xét tam giác MBC có: góc M + MCB + MBC = 180o => góc M + MCB + (MBI + IBC) = 180o
=> góc M + góc \(\frac{C}{2}\) + góc \(\frac{B}{2}\) + 90o = 180o => góc M + góc \(\frac{B+C}{2}\) = 90o => góc M = 90o - góc \(\frac{B+C}{2}\) = \(\frac{180^o-\left(B+C\right)}{2}=\frac{A}{2}\)
+) tương tự, ta có góc N = góc A/2
Vậy góc M = Góc N = góc A/2
b) đã làm ở bài trên
Kẻ KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)
Vì KK là điểm nằm trên tia phân giác BKBK của ˆGBCGBC^
⇒K⇒K cách đều 22 cạnh BG,BCBG,BC của ˆGBCGBC^
mà KG⊥BGKG⊥BG tại GG, KH⊥BCKH⊥BC tại HH(cách dựng hình)
⇒KG=KH⇒KG=KH(tính chất về điểm nằm trên tia phân giác của một góc) (∗)(∗)
Vì KKlà điểm nằm trên tia phân giác CKCK của ˆBCIBCI^
⇒K⇒K cách đều 22 cạnh BC,CIBC,CI của ˆBCIBCI^
mà KI⊥CIKI⊥CI tại II, KH⊥BCKH⊥BC tại HH(cách dựng hình)
⇒KI=KH⇒KI=KH(tính chất về điểm nằm trên tia phân giác của một góc) (⋆)(⋆)
Từ (∗)(∗) và (⋆)⇒KG=KI(⋆)⇒KG=KI mà KG⊥ABKG⊥AB tại G, KI⊥ACG, KI⊥AC tại II(cách dựng hình)
⇒K⇒K cách đều 22 cạnh của ˆABCABC^ (tính chất về điểm nằm trên tia phân giác của một góc)
⇒K⇒K thuộc tia phân giác của ˆABC
Mọi ngừi giúp mình vớiiiii ;-;