Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đổi điểm K thành điểm M là xong nha
Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC
Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC
Xét ΔBKI vuông tại K và ΔBGI vuông tại G có
BI chung
góc KBI=góc GBI
Do đó: ΔBKI=ΔBGI
Suy ra: IK=IG(1)
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
góc KCI=góc HCI
Do dó: ΔCKI=ΔCHI
Suy ra: IK=IH(2)
Từ (1) và (2) suy ra IG=IH
mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC
nên AI là phân giác của góc BAC(3)
Xét ΔBOM vuông tại O và ΔBDM vuông tại D có
BM chung
góc OBM=góc DBM
Do đó: ΔBOM=ΔBDM
Suy ra: MO=MD(4)
Xét ΔMDC vuông tại D và ΔMEC vuông tại E có
CM chung
góc DCM=góc ECM
Do đó: ΔMDC=ΔMEC
Suy ra: MD=ME(5)
Từ (4) và (5) suy ra MO=ME
mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC
nên AM là phân giác của góc BAC(6)
Từ (3) và (6) suy ra A,I,M thẳng hàng
Kẻ IH ⊥ AB, IJ ⊥ BC, IG ⊥ AC, KD ⊥ AB, KE ⊥ AC, KF ⊥ BC
Vì I nằm trên tia phân giác \(\widehat{BAC}\)
\(\Rightarrow IH=IG\)( tính chất đường phân giác )
I nằm trên tia phân giác của \(\widehat{BCA}\)
\(\Rightarrow IG=IJ\) ( tính chất đường phân giác )
\(\Rightarrow IH=IJ\)
Suy ra I nằm trên tia phân giác \(\widehat{ABC}\)( 1 )
K nằm trên tia phân giác \(\widehat{DAC}\)
\(\Rightarrow KD=KE\)( tính chất đường phân giác )
\(\Rightarrow KD=KF\)Suy ra K nằm trên tia phân giác \(\widehat{ABC}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra B ; I ; K thẳng hàng
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Các đường phân giác của các góc ngoài tại đỉnh A và đỉnh C của \(\Delta ABC\)cắt nhau tại K
=> BK là tia phân giác của ^ABC (1)
Các đường phân giác của góc tại đỉnh A và đỉnh C của \(\Delta ABC\)cắt nhau tại I
=> BI là tia phân giác của ^ABC (2)
Từ (1) và (2) suy ra 3 điểm B,I,K thẳng hành ^^
Kẻ KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)
Vì KK là điểm nằm trên tia phân giác BKBK của ˆGBCGBC^
⇒K⇒K cách đều 22 cạnh BG,BCBG,BC của ˆGBCGBC^
mà KG⊥BGKG⊥BG tại GG, KH⊥BCKH⊥BC tại HH(cách dựng hình)
⇒KG=KH⇒KG=KH(tính chất về điểm nằm trên tia phân giác của một góc) (∗)(∗)
Vì KKlà điểm nằm trên tia phân giác CKCK của ˆBCIBCI^
⇒K⇒K cách đều 22 cạnh BC,CIBC,CI của ˆBCIBCI^
mà KI⊥CIKI⊥CI tại II, KH⊥BCKH⊥BC tại HH(cách dựng hình)
⇒KI=KH⇒KI=KH(tính chất về điểm nằm trên tia phân giác của một góc) (⋆)(⋆)
Từ (∗)(∗) và (⋆)⇒KG=KI(⋆)⇒KG=KI mà KG⊥ABKG⊥AB tại G, KI⊥ACG, KI⊥AC tại II(cách dựng hình)
⇒K⇒K cách đều 22 cạnh của ˆABCABC^ (tính chất về điểm nằm trên tia phân giác của một góc)
⇒K⇒K thuộc tia phân giác của ˆABC