CMR (3^1+3^2+3^3+...+3^2008+3^2009+3^2010) chia hết cho 13
mong mọi người giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)
M=\(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}\)
= \(3^{2008}.\left(3^4-3^3+3^2-3\right)\)
= \(3^{2008}.60\)
Vì \(60⋮10\) => \(3^{2008}.60⋮10\)
Hay \(3^{2012}-3^{2011}+3^{2010}-3^{2009}+3^{2008}⋮10\)
Vậy \(M⋮10\)
Chúc bạn hk tốt !!
Đặt \(A=3+3^2+...+3^{2010}\)
Vì A có 2010 số hạng nên ta chia A thành 670 nhóm,mỗi nhóm 3 số hạng
Ta có: \(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{2008}.13\)
\(=13.\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
\(\Rightarrow A\)chia hết cho 13
Vậy, A chia hết cho 13
tích mik nhé. Cảm ơn
31+ 32+ 33+ 34 +...+32009+32010
= ( 31 +32 +33) +( 34 + 35 + 36)+...+ (32008+32009+32010)
= 3 (1+ 3+ 32) +34 (1+3+32) +...+ 32008( 1+ 3+ 32)
= 3.13 + 34 .13+...+ 32008 .13
= (3+ 34+...+ 32008) .13
Vì 13 chia hết cho 13
=> (3+ 34+...+ 32008) .13 cũng chia hết cho 13 ( đpcm)
câu 1 : \(147.13-48.13+13\)
\(=13.\left(147-48+1\right)\)
\(=13.100\)
\(=1300\)
Ta có:
\(3^1+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{2008}\right)\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
=> ĐPCM
thank