K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9

b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)

vì 155 chia hết cho 31 đa thức F chia hết cho 31

19 tháng 9 2017

a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

12 tháng 8 2017

a) 4.(1+4)+43.(1+4)+................+459(1+4)

=5.4+5.43+...+5.459

=5.(4+43+.+459) chia hết cho 5

4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)

=21.4+44.21+..+21.458

=21.(4+44+.+458) chia hết cho 21

b) 5.(1+5)+53(1+5)+.+59(1+5)

=6.(5+53+.............+59) chia hết cho 6

23 tháng 7 2018

a) Đặt biểu thức trên là A, ta có:

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)

=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)

=> A = 4 . 5 + 43 . 5 + ... + 459 . 5

=> A = 5(4 + 43 + ... + 459)

=> A ⋮ 5

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)

=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)

=> A = 4 . 21 + 44 . 21 + ... + 458 . 21

=> A = 21(4 + 44 + ... + 458)

=> A ⋮ 21

b) Đặt biểu thức trên là B, ta có:

B = 5 + 52 + 53 + 54 + ... + 510

=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)

=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)

=> B = 5 . 6 + 53 . 6 + ... + 59 . 6

=> B = 6(5 + 53 + ... + 59)

=> B ⋮ 6  

7 tháng 7 2017

Ta có : (5+5x2+5x3+..+5x4+..+5x60 )

=5x(1+2+...+60)

=5x[(60+1)x60:2]

=5x61x30=5x61x5x6=>chia hết cho 6

7 tháng 7 2017

\(5+5^2+5^3+5^4+...+5^{60}\)

\(=5.\left(5+1\right)+5^3.\left(5+1\right)+....+5^{49}.\left(5+1\right)\)

\(=5.6+5^3.6+...+5^{49}.6\)

=> \(⋮6\)

\(5+5^2+5^3+...+5^{60}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{58}+5^{59}+5^{60}\right)\)

\(=5.31+5^4.31+...+5^{58}.31\)

\(\Rightarrow⋮31\)

8 tháng 8 2018

\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)

\(=5\times31+5^4\times31+5^7\times31\)

\(=31\times\left(5+5^4+5^7\right)⋮31\)

Vậy tổng trên chia hết cho 31

31 tháng 8 2020

            Bài làm :

Ta có :

\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)

\(=5\times31+5^4\times31+5^7\times31\)

\(=31\times\left(5+5^4+5^7\right)⋮31\)

=> Điều phải chứng minh

17 tháng 7 2016

đăng từng bài rồi mình giải cho nha

17 tháng 7 2016

Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21

Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77

Các câu khác tương tự

3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)

4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)

5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6