mọi người giúp em giải bài này với ạ.em cần gấp ..cảm ơn mn (có kèm hình vẽ giúp em )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
a.
Hệ có nghiệm duy nhất khi:
\(\dfrac{m}{2}\ne\dfrac{1}{-1}\Rightarrow m\ne-2\)
b.
Hệ có vô số nghiệm khi:
\(\dfrac{1}{1}=\dfrac{m}{-1}=\dfrac{3}{3}\Rightarrow m=-1\)
c.
Hệ vô nghiệm khi:
\(\dfrac{2}{-4}=\dfrac{-1}{2}\ne\dfrac{-m}{4}\Rightarrow m\ne2\)
vẽ lại mạch ta có RAM//RMN//RNB
đặt theo thứ tự 3 R là a,b,c
ta có a+b+c=1 (1)
điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0
áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)
\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)
dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)
từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)
vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )
a) bạn tự vẽ đi nhé (cách vẽ RntRbntAmpe)
b)
i)khi ampe kế chỉ 0.3 (A)
Ir=Ib=Ia=0.3(A)
⇒Rtđ =\(\dfrac{U}{Ia}\)=\(\dfrac{12}{0.3}\)=40Ω
khi ampe kế chỉ 0.8
Ir=Ib=Ia=0.8A
=>Rtđ =\(\dfrac{12}{0.8}\)=15Ω
ii) vì R tỉ lệ nghịch với I
=>để Rb max<=>I=0.3A
=>Ir=Ib =0.3 A
có \(\dfrac{Rr}{Rb}=\dfrac{Ib}{Ir}=\dfrac{0.3}{0.3}=1\)
mà từ i) ta có Rtđ =Rr+Rb =40
=> Rr = Rbmax = \(\dfrac{40}{2}\)=20Ω
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
IM=IN
CI chung
Do đó: ΔIMC=ΔINC
b: Xét ΔCKB có
M là trung điểm của BC
MN//KB
Do đó: N là trung điểm của CK