chứng minh số tự nhiên n lớn hơn 0 là số chính phương khi và chỉ khi ước tự nhiên của chúng là số lẻ
giúp tớ vs tớ đang cần gấp !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Ta có :
\(x=99....90....025\)
| n số 9 ||n số 0|
Dễ thấy \(10^n-1=999...9\)( n chữ số 9 )
Ví dụ \(10-1=9\)
\(10000-1=9999\)
\(...\)
\(\Rightarrow\left(10^n-1\right).10^{n+2}+25\)
\(=10^n.10^{n+2}-10^{n+2}+25\)
\(=10^{2n+2}-10.10^{n+1}+25\)
\(=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2\)
\(=\left(10^{n+1}-5\right)^2\) là số chính phương.
Vậy ...
Ta có : 62 = 36 = 22 x 32
Số ước của 3n x 22 x 32 = (n + 1) x (2 + 1) x (2 + 1) = 21
=> (n+1) x 3 x 3 = 21
=> (n + 1) x 9 = 21
=> n + 1 = \(\frac{7}{3}\)
=> n = \(\frac{4}{3}\)
Ta có: A > 1 (dĩ nhiên)
A\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{n}=1+\frac{1}{1}-\frac{1}{n}=2-\frac{1}{n}<2\)Nên 1 < A < 2 nên A không phải là số tự nhiên
Phân tích thành tích các thừa số nguyên tố: \(n=p_1^{a_1}p_2^{a_2}...p_n^{a_n}\).
Số ước tự nhiên của nó là: \(\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\).
\(n\)là số chính phương \(\Leftrightarrow\)\(a_1,a_2,...,a_n\)là các số chẵn
\(\Leftrightarrow a_1+1,a_2+1,...,a_n+1\)là các số lẻ
\(\Leftrightarrow\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\)là số lẻ.
Ta có đpcm.