K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 8 2021

Phân tích thành tích các thừa số nguyên tố: \(n=p_1^{a_1}p_2^{a_2}...p_n^{a_n}\).

Số ước tự nhiên của nó là: \(\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\).

\(n\)là số chính phương \(\Leftrightarrow\)\(a_1,a_2,...,a_n\)là các số chẵn

\(\Leftrightarrow a_1+1,a_2+1,...,a_n+1\)là các số lẻ 

\(\Leftrightarrow\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\)là số lẻ. 

Ta có đpcm.

5 tháng 7 2016

Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)

\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)

P chia hết cho 11 thì

  • Hoặc thừa số thứ nhất \(\left[11\left(2a+b\right)-6\left(a-b\right)\right]\) chia hết cho 11 => (a - b) chia hết cho 11 => Thừa số thứ 2: \(\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)cũng chia hết cho 11. Do đó P chia hết cho 112.
  • Và ngược lại, Thừa số thứ 2 chia hết cho 11 ta cũng suy được thừa số thứ 1 cũng chia hết cho 11 và P cũng chia hết cho 112.

Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM

16 tháng 5 2015

Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.

Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).

n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.

n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.

Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3

Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4

Vậy n = 23.34 = 648

            Số cần tìm là 648.

7 tháng 10 2016

Ta có :

\(x=99....90....025\)

         | n số 9 ||n số 0|

Dễ thấy \(10^n-1=999...9\)( n chữ số 9 )

Ví dụ \(10-1=9\)

\(10000-1=9999\)

\(...\)

\(\Rightarrow\left(10^n-1\right).10^{n+2}+25\)

\(=10^n.10^{n+2}-10^{n+2}+25\)

\(=10^{2n+2}-10.10^{n+1}+25\)

\(=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2\)

\(=\left(10^{n+1}-5\right)^2\) là số chính phương.

Vậy ...

Ta có : 62 = 36 = 22 x 32

Số ước của 3n x 22 x 32 = (n + 1) x (2 + 1) x (2 + 1) = 21

                                     => (n+1) x 3 x 3 = 21

=> (n + 1) x 9 = 21

=> n + 1 = \(\frac{7}{3}\)

=> n = \(\frac{4}{3}\)

25 tháng 12 2021

lỗi 

28 tháng 2 2016

Ta có: A  > 1 (dĩ nhiên)

A\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{n}=1+\frac{1}{1}-\frac{1}{n}=2-\frac{1}{n}<2\)Nên 1 < A < 2 nên A không phải là số tự nhiên