K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)

Ta cần so sánh:

\(ab+2017a\) với \(ab+2017b\)

Cần so sánh \(a\) với \(b\)

Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

Mấy câu sau dễ tương tự

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

15 tháng 4 2023

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

1: B là số nguyên

=>n-3 thuộc {1;-1;5;-5}

=>n thuộc {4;2;8;-2}

3:

a: -72/90=-4/5
b: 25*11/22*35

\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)

c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

NV
5 tháng 1 2021

\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)

\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)

\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)

\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)

\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)