K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2017\right)}{b\left(b+2017\right)}\\\dfrac{a+2017}{b+2017}=\dfrac{b\left(a+2017\right)}{b\left(b+2017\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2017a}{b^2+2017b}\\\dfrac{a+2017}{b+2017}=\dfrac{ab+2017b}{b^2+2017b}\end{matrix}\right.\)

Ta cần so sánh:

\(ab+2017a\) với \(ab+2017b\)

Cần so sánh \(a\) với \(b\)

Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

Mấy câu sau dễ tương tự

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

8 tháng 11 2017

Câu 1:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}\right)\) - \(\left(\dfrac{x+1}{13}+\dfrac{x+1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)\)= 0

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

=> x = 0 - 1

=> x = -1

8 tháng 11 2017

Câu 2:

Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-3.4+9+12}{n-4}\)

\(=\dfrac{3.\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A có giá trị nguyên thì:

n - 4 \(\in\) Ư(21)

=> n - 4 \(\in\)

n4 3 -3 7 -7 -1 1 -21 21
n 7 1 11 -3 3 5 -17 25

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

15 tháng 4 2023

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG