chứng minh bằng phản chứng :
cho a,b,c thuộc R thỏa 0<a,b,c<1
CM có ít nhất 1 trong các bất đẳng thức sau sai :
a(1-b) ≥1/4 (1) ; b(1-c) ≥1/4 (2) ; c(1-a) ≥1/4 (3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ : \(b^2=a\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Hay \(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}=\frac{a+2016b}{a+2016c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{a+2016b}{b+2016c}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\left(\frac{a+2016b}{a+2016c}\right)^2\)
Hay \(\frac{a.b}{b.c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\Rightarrow\frac{a}{c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\)(ĐPCM)
mk nha