Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
\(x+y-z=2\Rightarrow z=x+y-2\)
\(3x^2+2y^2-z^2=13\)
\(\Leftrightarrow3x^2+2y^2-\left(x+y-2\right)^2=13\)
\(\Leftrightarrow2x^2+y^2-2xy+4x+4y=17\)
\(\Leftrightarrow x^2+y^2+4-2xy-4x+4y+x^2+8x+16=37\)
\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37=1^2+6^2\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y-2\right)^2=1\\\left(x+4\right)^2=6^2\end{matrix}\right.\) (do \(x\) nguyên dương nên chỉ có TH này)
\(\Rightarrow\left\{{}\begin{matrix}x-y-2=1\\x+4=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) (loại)
Hoặc \(\left\{{}\begin{matrix}x-y-2=-1\\x+4=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Câu 2:
\(a^2+b^2=c^2\Leftrightarrow\left(a+b\right)^2-2ab=c^2\)
\(\Leftrightarrow2ab=\left(a+b\right)^2-c^2=\left(a+b-c\right)\left(a+b+c\right)\) (1)
\(\Rightarrow2ab⋮\left(a+b+c\right)\)
- Nếu \(a+b+c\) lẻ \(\Rightarrow2⋮̸\left(a+b+c\right)\Rightarrow ab⋮\left(a+b+c\right)\)
- Nếu \(a+b+c\) chẵn, ta có \(\left(a+b+c\right)+\left(a+b-c\right)=2\left(a+b\right)\) chẵn
\(\Rightarrow a+b-c=2\left(a+b\right)-\left(a+b+c\right)\) là hiệu của 2 số chẵn \(\Rightarrow\) là số chẵn
\(\Rightarrow a+b-c=2k\) thay vào (1) ta được
\(\Rightarrow2k\left(a+b+c\right)=2ab\) \(\Rightarrow ab=k\left(a+b+c\right)\Rightarrow ab⋮\left(a+b+c\right)\)
1/ Đầu tiên ta chứng minh: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (1)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^3}{b}-a^2\right)\ge0\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2\left(a-b\right)}{b}-a\left(a-b\right)\right)+\Sigma_{cyc}a\left(a-b\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{a\left(a-b\right)^2}{b}+\Sigma_{cyc}\frac{1}{2}\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2a+b\right)}{2b}\ge0\)
BĐT cuối đúng nên (1) đúng. (*)
Bây giờ ta đi chứng minh: \(a^2+b^2+c^2\ge5\)
Đặt \(\left(a+b+c;ab+bc+ca\right)\rightarrow\left(3u;3v^2\right)\) thì \(3u=9-3v^2\)
và \(a^2+b^2+c^2=\left(3u\right)^2-6v^2=\left(9-3v^2\right)^2-6v^2\)
\(=\left(3v^2-9\right)^2-6v^2=9v^4-60v^2+81\)
Đặt \(v^2=t\ge0\) .Ta cần tìm min của: \(9t^2-60t+81\)
Ta có: \(9t^2-60t+81=\left(3t-10\right)^2-19\ge-19\)
Dấu "=" xảy ra khi t = 10/3 tức là v= \(\sqrt{\frac{10}{3}}\)....
Em thấy có gì đó sai sai thì phải ạ:((
Câu 1:
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+ac+bc\ge2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+ac+bc\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
//
\(a+b+c+ab+ac+bc\le a+b+c+\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)\ge9\)
\(\Rightarrow\left(a+b+c-\frac{3\sqrt{13}-3}{2}\right)\left(a+b+c+\frac{3\sqrt{13}+3}{2}\right)\ge0\)
\(\Rightarrow a+b+c\ge\frac{3\sqrt{13}-3}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\ge\frac{1}{3}\left(\frac{3\sqrt{13}-3}{2}\right)^2=\frac{21-3\sqrt{13}}{2}>5\)
\(\Rightarrow a^2+b^2+c^2>5\)
Dấu "=" ko xảy ra
1. Vì x, y, z > 0
\(xy+yz+zx\ge2xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)
Suy ra:
\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)
Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)
và \(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)
Nhân (1), (2), (3) với nhau theo vế ta được
\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)
\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)
Mà (2;3)=1
=> \(n\left(n+1\right)\left(n+2\right)⋮6\)
=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Câu b em kiểm tra lại đề bài.