Chứng tỏ rằng
\(\left(5n+7\right)\left(4n+6\right)⋮2\) với \(\forall n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
P = \(\left(m+1\right)\left(m+3\right)\left(m+5\right)\left(m+7\right)+15\)
P = \(\left(m^2+8m+7\right)\left(m^2+8m+15\right)+15\) (*)
Đặt \(m^2+8m+7=a\)
(*) \(\Leftrightarrow a.\left(a+8\right)+15\)
= \(a^2+8a+15\)
= \(\left(a+3\right)\left(a+5\right)\)
= \(\left(m^2+8m+7+3\right)\left(m^2+8m+7+5\right)\)
= \(\left(m^2+8m+10\right)\left(m^2+8m+12\right)\)
= \(\left(m^2+8m+10\right)\left(m+2\right)\left(m+6\right)⋮\left(m+6\right)\) ( đpcm )
ta có : \(\left(5n+7\right)\left(4n+6\right)=20n^2+30n+28n+42\)
\(=20n^2+58n+42=2\left(10n^2+29n+21\right)⋮2\) với mọi \(n\in N\)
vậy \(\left(5n+7\right)\left(4n+6\right)⋮2với\forall n\in N\)