Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
=(m+1)(m+7)*(m+3)(m+5)+15=(m+8m+7)(m+8m+15)+15
=(m+8m+11-4)(m+8m+11+4)+15=(m+8m+11)2-16+15
=(m+8m+11)2-1=(m+8m+11+1)(m+8m+11-1)=(m+8m+12)(m+8m+10)
(m+1)(m+3)(m+5)(m+7)+15
phân tích đa thức thành nhân tử :
(m+2)(m+6)(m\(^2\)+8m+10)
\(A=\dfrac{m^2+5m+n^2+5n+2mn-6}{m^2+6m+n^2+6n+2mn}\)
\(=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}\)
\(=\dfrac{2013^2+5\cdot2013-6}{2013^2+6\cdot2013}=\dfrac{2012}{2013}\)
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
\(A=\left(2x+y\right)^2+\left(x+4y\right)^2=5x^2+12xy+17y^2=6x^2+12xy+18y^2-\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2⋮3\)
- Nếu \(\left\{{}\begin{matrix}x⋮̸3\\y⋮̸3\end{matrix}\right.\) \(\Rightarrow x^2;y^2\) đều chia 3 dư 1 \(\Rightarrow x^2+y^2\) chia 3 dư 2 trái giả thiết bên trên (loại)
- Nếu ít nhất một trong 2 số chia hết cho 3 \(\Rightarrow\) số còn lại cũng chia hết cho 3
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=3n\end{matrix}\right.\) \(\Rightarrow xy=9kn⋮9\)
P = \(\left(m+1\right)\left(m+3\right)\left(m+5\right)\left(m+7\right)+15\)
P = \(\left(m^2+8m+7\right)\left(m^2+8m+15\right)+15\) (*)
Đặt \(m^2+8m+7=a\)
(*) \(\Leftrightarrow a.\left(a+8\right)+15\)
= \(a^2+8a+15\)
= \(\left(a+3\right)\left(a+5\right)\)
= \(\left(m^2+8m+7+3\right)\left(m^2+8m+7+5\right)\)
= \(\left(m^2+8m+10\right)\left(m^2+8m+12\right)\)
= \(\left(m^2+8m+10\right)\left(m+2\right)\left(m+6\right)⋮\left(m+6\right)\) ( đpcm )