K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Tìm các số tự nhiêm x để các phân số sau nhận giá trị nguyên : 1) \(\dfrac{n+3}{2n-2}\); 2) \(\dfrac{12}{3n-1}\); 3)\(\dfrac{2n+3}{7}\); 4) \(\dfrac{n+10}{2n-8}\). Bài 2. Tìm các số nguyên x, y sao cho: 1) \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\); 2) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\); 3) \(\dfrac{4}{x}+\dfrac{y}{3}=\dfrac{5}{6}\); 4)\(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\); 5) \(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\); 6) xy - x - y = 2; 7) 2xy - x + y = 3; 8)...
Đọc tiếp

Bài 1. Tìm các số tự nhiêm x để các phân số sau nhận giá trị nguyên :
1) \(\dfrac{n+3}{2n-2}\); 2) \(\dfrac{12}{3n-1}\); 3)\(\dfrac{2n+3}{7}\); 4) \(\dfrac{n+10}{2n-8}\).
Bài 2. Tìm các số nguyên x, y sao cho:
1) \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\); 2) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\); 3) \(\dfrac{4}{x}+\dfrac{y}{3}=\dfrac{5}{6}\);
4)\(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\); 5) \(\dfrac{x}{6}-\dfrac{2}{y}=\dfrac{1}{30}\); 6) xy - x - y = 2;
7) 2xy - x + y = 3; 8) 2xy - 4x + y = 7; 9) 3xy + x - y = 1.
Bài 3. Chứng minh rằng:
1) Tích của hai số nguyên liên tiếp chia hết cho 2;
2) Tích của ba số nguyên liên tiếp chia hết cho 6;
3) Tích của hai số chẵn liên tiếp chia hết cho 8;
4) Tích của năm số nguyên liên tiếp chia hết cho 120;
5) Tích của bốn số nguyên liên tiếp chia hết cho 24;
6) Tích của bốn số nguyên liên tiếp chia hết cho 720;
7) Tích của ba số chẵn liên tiếp chia hết cho 48.
Mk đang cần gấp. Các bnm giúp mk nhanh nha. Mk sẽ tick cho.

0
16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

14 tháng 8 2021

Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN

⇒2n-1 là số nguyên dương nhỏ nhất

⇒2n-1=1

⇒2n=2

⇒n=1

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

28 tháng 4 2016

2. Để A có giá trị nguyên => 11 chia hết 2n - 3

=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}

=> 2n thuộc { 4 ; 2 ; 14 ; -8}

=> n thuộc { 2 ; 1 ; 7 ; -4}

Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)

3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x

=> -3x + 6x = 15

=> 3x = 15

=> x = 5 (tm)

4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4

=> (x + 1)2 = (+-2)2

=> x + 1 = +-2

=> x = 1 ; -3 (tm)

28 tháng 4 2016

Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0

Vậy C có chữ số tận cùng là 0

6 tháng 1 2021

ok how are you

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh

 

7 tháng 11 2022

Bạn Tham Khảo:

loading...

DD
15 tháng 6 2021

\(\frac{2n+3}{n+2}=\frac{2n+4-1}{n+2}=2-\frac{1}{n+2}\inℤ\)

mà \(n\inℤ\Rightarrow n+2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\)

10 tháng 5 2022

\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)

Để A nguyên => 3-n = Ước của 5

\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)