1.
a) Thu gọn biểu thức A= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
b) So sánh M= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
c) Cho C= \(\sqrt{45+\sqrt{2009}}\) và E= \(\sqrt{45-\sqrt{2009}}\) .Chứng minh rằng : C+ E= 7\(\sqrt{2}\)
c. Ta có: C+E=\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{\left(\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{41}{2}}\right)^2}+\sqrt{\left(\sqrt{\dfrac{49}{2}}-\sqrt{\dfrac{41}{2}}\right)^2}=\dfrac{7}{\sqrt{2}}+\dfrac{\sqrt{41}}{\sqrt{2}}+\dfrac{7}{\sqrt{2}}-\dfrac{\sqrt{41}}{\sqrt{2}}=\dfrac{2.7}{\sqrt{2}}=7\sqrt{2}\)
=> đpcm.