Tính:(1/2-1)(1/3-1)(1/4-1)...1/100
giải giúp mk vs mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=1+1/3+...+1/3^99
=>2A=1-1/3^100=(3^100-1)/3^100
=>A=(3^100-1)/(2*3^100)
BT=\(\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{12\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\dfrac{2\left(\sqrt{3}-1\right)}{2}+\dfrac{2+\sqrt{3}}{4-3}+\dfrac{12\left(3-\sqrt{3}\right)}{9-3}\)
\(=\sqrt{3}-1+2+\sqrt{3}+2\left(3-\sqrt{3}\right)\)
\(=\sqrt{3}-1+2+\sqrt{3}+6-2\sqrt{3}=7\)
đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{256}\)
=> A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^8}\)
=> 2A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^7}\)
=> 2A-A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^8}\right)\)
=> A=\(1-\frac{1}{2^8}\)
- Tết rồi mà vẫn còn học :)
- Gọi x là số sách ở ngăn 2 lúc đầu.
- Theo đề, ta lập được bảng sau:
Số sách ngăn 1 Số sách ngăn 2
Ban đầu 3x x
Lúc sau 3x-20 \(\dfrac{5}{7}\left(3x-20\right)\)
- Qua đó, ta lập được phương trình sau:
x+20=\(\dfrac{5}{7}\left(3x-20\right)\)
⇔x+20=\(\dfrac{15}{7}x-\dfrac{100}{7}\)
⇔\(\dfrac{8}{7}x-\dfrac{240}{7}\)=0
⇔x=30 (cuốn sách)
- Vậy số sách ở ngăn 1,2 lúc đầu lần lượt là: 90;30.
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot5\cdot....\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
Sửa đề
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\)\(\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{99}{100}\right)\) ( 99 phân số )
\(=\)\(\frac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-99\right)}{2.3.4...100}\)
\(=\)\(-\frac{1}{100}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)
\(=-\frac{1}{100}\)