Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là tích ta có: A=2.(2+1+2+3).2(0.1.2.3)
A=(2.8).(2.0)
A =16.0=0 vậy tick đó = 0
**** nha công chúa
a/ \(A=1+3+3^2+..........+3^{55}\)
\(\Leftrightarrow3A=3+3^2+...........+3^{55}+3^{56}\)
\(\Leftrightarrow3A-A=\left(3+3^2+........+3^{56}\right)-\left(1+3+....+3^{55}\right)\)
\(\Leftrightarrow2A=3^{56}-1\)
\(\Leftrightarrow A=\frac{3^{56}-1}{2}\)
*\(M=1+3+3^2+3^3+...+\)\(3^{19}=4+3^2+3^3+...+3^{19}\)
Ta có \(3^2⋮3^2=9,3^3⋮3^2=9,...,3^{19}⋮3^2=9\)nhưng \(4⋮̸9\)
=> \(M⋮̸̸9\)
*\(M=1+3+3^2+...+3^{19}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+...+\left(3^{16}+3^{17}+3^{18}+3^{19}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+...+\)\(3^{16}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+\right)3^{16}⋮40\)
=>\(M⋮40\)
\(a.\) \(M=1+3+3^2+...+3^{19}\)
Ta có: 1+3=4 ko chia hết cho 9, \(3^2⋮9,3^3⋮9,...,3^{19}⋮9\)
\(\Rightarrow\left(1+3\right)+3^2+3^3+...+3^{19}\)ko chia hết cho 9
\(\Rightarrow M\)ko chia hết cho 9.
Sorry mình ko viết đc dấu ko chia hết vì nó lỗi.
\(b.M=1+3+3^2+3^3+...+3^{19}\)
\(\Rightarrow M=\left(1+3+3^2+3^3\right)+...\)\(+\left(3^{16}+3^{17}+3^{18}+3^{19}\right)\)
\(\Rightarrow M=1\times\left(1+3+3^2+3^3\right)+3^4\)\(\times\left(1+3+3^2+3^3\right)+...+\)\(3^{16}\times\left(1+3+3^2+3^3\right)\)
\(\Rightarrow M=1\times40+3^4\times40+...\)\(3^{16}\times40\)
\(\Rightarrow M=40\times\left(1+3^4+...+3^{16}\right)\)
\(\Rightarrow M⋮40\)
Hok tốt.
Nhớ cho mik đúng nha
a. \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3-1}{3}=\dfrac{2}{3}\); \(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5-3}{15}=\dfrac{2}{15}\)
b. Ta có \(VP=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\) mà \(VP=\dfrac{2}{3}\) \(\Rightarrow VT=VP\)
Ta có \(VP=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\) mà \(VP=\dfrac{2}{3.5}=\dfrac{2}{15}\) \(\Rightarrow VT=VP\)
c. \(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
\(=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}+\dfrac{1}{99.101}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\left(1-\dfrac{1}{101}\right)\) \(=\dfrac{200}{101}\)
a: \(\dfrac{1}{1}-\dfrac{1}{3}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
b: \(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{3}{3}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{15}-\dfrac{3}{15}=\dfrac{2}{15}\)
c: Ta có: \(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
3A=1+1/3+...+1/3^99
=>2A=1-1/3^100=(3^100-1)/3^100
=>A=(3^100-1)/(2*3^100)