1) Phân tích các đa thức sau thành nhân tử
a) x^3 - 6x^2 + 11x - 6
b) x^3 - 6x^2 - 9x+ 14
c) x^3+ 6x^2+ 11x+ 6
d)x^5+ x^4+ x^3+ x^2+ x+ 1
e) x^6 - 9x^3 + 8
g) x^6 + 27
2) Tìm x , biết
a) (x+3)^4 - (x-3)^4 - 24x^3 = 108
b) (x+2)^5 - (x-2)^5 = 64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
a) x3 -2x2 +5x-4
=x3-x2-x2+x+4x-4
=x2(x-1)-x(x-1)+4(x-1)
=(x2-x+4)(x-1)
b) x3-x2+x+3
=x3+x2-2x2-2x+3x+3
=x2(x+1) -2x(x+1)+3(x+1)
=(x2-2x+3)(x+1)
c) 6x3+x2+x+1
=6x3+ 3x2-2x2-x+2x+1
=6x2(x+\(\frac{1}{2}\)) - 2x(x+\(\frac{1}{2}\)) +2(x+\(\frac{1}{2}\))
=(6x2-2x+2) (x+\(\frac{1}{2}\))
=2( 3x2-x+1) (x+\(\frac{1}{2}\))
d) 4x3 + 6x2+4x+1
= 4x3+2x2+4x2+2x+2x+1
= 4x2(x+\(\frac{1}{2}\))+ 4x(x+\(\frac{1}{2}\))+2(x+\(\frac{1}{2}\))
= 2(2x2 +2x+1)( x+\(\frac{1}{2}\))
e) x6 -9x3+8
g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
=\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)
đặt \(x^2+7x+10=a\)
ta có \(a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-5^2\)
\(=\left(a+1-5\right)\left(a+1+5\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)
b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
a)18x2-12x
=3x(6x-4)
b)3x2-11x+6
=x(3x-11+6)
=x(3x-5)
c)x3+6x2+11x+6
=x2(x+23
\(18x^2-12x\)
\(=6x\left(3x-2\right)\)
\(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
b, 2x2 + 3x - 27
=2x2+9x-6x-27
=x(2x+9)-3(2x+9)
=(x-3)(2x+9)
d, x3 - 7x + 6
=x3+0x2-7x+6
= x3-x2+x2-x-6x+6
= (x3-x2)+(x2-x)-(6x-6)
= x2(x-1)+x(x-1)-6(x-1)
= (x-1) (x2+x-6)
= (x-1)(x2-2x+3x-6)
=(x-1)[x(x-2)+3(x-2)]
=(x-1)(x+3)(x-2)
c) 2x\(^2\)- 5xy - 3y\(^2\)
= 2x\(^2\)- 6xy + xy - 3y\(^2\)
= 2x( x - 3y) + y( x - 3y)
= (2x + y)( x - 3y)
e) x3 + 5x2 + 8x + 4
= x3 + 2x2 + 3x2 + 6x + 2x + 4
= x2( x + 2) + 3x ( x + 2) + 2(x + 2)
= (x + 2)(x2 + 3x + 2)
Các câu còn lại cx làm tương tự theo cách này nha !!! Chúc bn học tốt
Bài 1:
a: \(x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b: \(x^3-6x^2-9x+14\)
\(=x^3-7x^2+x^2-7x-2x+14\)
\(=\left(x-7\right)\left(x^2+x-2\right)\)
\(=\left(x-7\right)\left(x+2\right)\left(x-1\right)\)
c: \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)