Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
=\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)
đặt \(x^2+7x+10=a\)
ta có \(a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-5^2\)
\(=\left(a+1-5\right)\left(a+1+5\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)
b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)
a) x3 -2x2 +5x-4
=x3-x2-x2+x+4x-4
=x2(x-1)-x(x-1)+4(x-1)
=(x2-x+4)(x-1)
b) x3-x2+x+3
=x3+x2-2x2-2x+3x+3
=x2(x+1) -2x(x+1)+3(x+1)
=(x2-2x+3)(x+1)
c) 6x3+x2+x+1
=6x3+ 3x2-2x2-x+2x+1
=6x2(x+\(\frac{1}{2}\)) - 2x(x+\(\frac{1}{2}\)) +2(x+\(\frac{1}{2}\))
=(6x2-2x+2) (x+\(\frac{1}{2}\))
=2( 3x2-x+1) (x+\(\frac{1}{2}\))
d) 4x3 + 6x2+4x+1
= 4x3+2x2+4x2+2x+2x+1
= 4x2(x+\(\frac{1}{2}\))+ 4x(x+\(\frac{1}{2}\))+2(x+\(\frac{1}{2}\))
= 2(2x2 +2x+1)( x+\(\frac{1}{2}\))
e) x6 -9x3+8
Ta có : x3 - 7x + 6
= x3 - x - 6x + 6
= x(x2 - 1) - 6(x - 1)
= x(x + 1)(x - 1) - 6(x - 1)
= (x - 1) [x(x + 1) - 6]
= (x - 1) (x2 + x - 6) .
CÁC Ý SAU TƯƠNG TỰ
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
a, x^4+6x^3+11x^2+6x+1
= x^4 + 6x^3 + 9x² + 2x² + 6x + 1
= x^4 + 9x² + 1 + 6x^3 + 2x² + 6x
= x^4 + 9x² + 1² + 2.x².3x + 2.x².1 + 2.3x.1
= (x² + 3x + 1)²
Mình làm được ý a nên tk 1 tk
Bài 1:
a: \(x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b: \(x^3-6x^2-9x+14\)
\(=x^3-7x^2+x^2-7x-2x+14\)
\(=\left(x-7\right)\left(x^2+x-2\right)\)
\(=\left(x-7\right)\left(x+2\right)\left(x-1\right)\)
c: \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)