K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\forall x\in N\) ta có

\(B=x^3+6x^2-19x-24=\left(x-3\right)\left(x+1\right)\left(x+8\right)\)

- Nếu x chẵn thì \(\left(x+8\right)⋮2\Rightarrow B⋮2\)

- Nếu x lẻ thì \(\left(x-3\right)⋮2\Rightarrow B⋮2\)

Vậy \(B⋮2\)

Lại có \(x-3\equiv x\left(mod3\right)\)\(x+8\equiv x+2\left(mod3\right)\)

\(\Rightarrow B=\left(x-3\right)\left(x+1\right)\left(x+8\right)\equiv x\left(x+1\right)\left(x+2\right)\) (mod3)

Mặt khác x, x+1, x+2 là 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 3 \(\Rightarrow\left[x\left(x+1\right)\left(x+2\right)\right]⋮3\)

Hay \(B⋮3\)

Ta có \(B⋮2\), \(B⋮3\) mà 2 và 3 là 2 số nguyên tố cùng nhau nên \(B⋮6\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

 

Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z

\(B=x^3-x+24x\)

\(=x\left(x-1\right)\left(x+1\right)+24x\)

Vì x;x-1;x+1 là 3 số liên tiếp

nên x(x-1)(x+1) chia hết cho 3!=6

=>B chia hết cho 6

Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z

\(B=x^3-x+24x\)

\(=x\left(x-1\right)\left(x+1\right)+24x\)

Vì x;x-1;x+1 là 3 số liên tiếp

nên x(x-1)(x+1) chia hết cho 3!=6

=>B chia hết cho 6

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

28 tháng 8 2017

ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36=24n⋮24\)

\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)

28 tháng 8 2017

\(\left(n+6\right)^2-\left(n-6\right)^2\\ =\left(n+6+n-6\right).\left[n+6-\left(n-6\right)\right]\\ =2n.\left(n+6-n+6\right)\\ =2n.12\\ =24n⋮24\)

Vậy ...

28 tháng 8 2017

Ta có :

\(\left(n+6\right)^2-\left(n-6\right)^2\)  = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)

\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)

\(=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=12n+12n\)

\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và  \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24  (đpcm)

19 tháng 8 2019

Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!

29 tháng 5 2016

bài này mà là tón 8 á?mik nghĩ là toán 6