Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z
\(B=x^3-x+24x\)
\(=x\left(x-1\right)\left(x+1\right)+24x\)
Vì x;x-1;x+1 là 3 số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!=6
=>B chia hết cho 6
Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z
\(B=x^3-x+24x\)
\(=x\left(x-1\right)\left(x+1\right)+24x\)
Vì x;x-1;x+1 là 3 số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!=6
=>B chia hết cho 6
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36=24n⋮24\)
\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)
Ta có :
\(\left(n+6\right)^2-\left(n-6\right)^2\) = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)
\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)
\(=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=12n+12n\)
\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24 (đpcm)
Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!
\(\forall x\in N\) ta có
\(B=x^3+6x^2-19x-24=\left(x-3\right)\left(x+1\right)\left(x+8\right)\)
- Nếu x chẵn thì \(\left(x+8\right)⋮2\Rightarrow B⋮2\)
- Nếu x lẻ thì \(\left(x-3\right)⋮2\Rightarrow B⋮2\)
Vậy \(B⋮2\)
Lại có \(x-3\equiv x\left(mod3\right)\) và \(x+8\equiv x+2\left(mod3\right)\)
\(\Rightarrow B=\left(x-3\right)\left(x+1\right)\left(x+8\right)\equiv x\left(x+1\right)\left(x+2\right)\) (mod3)
Mặt khác x, x+1, x+2 là 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 3 \(\Rightarrow\left[x\left(x+1\right)\left(x+2\right)\right]⋮3\)
Hay \(B⋮3\)
Ta có \(B⋮2\), \(B⋮3\) mà 2 và 3 là 2 số nguyên tố cùng nhau nên \(B⋮6\)